综合多层优选尺度的高分辨率影像分割
Optimal Scales Based Segmentation of High Spatial Resolution Remote Sensing Data
查看参考文献21篇
文摘
|
采用面向对象方法处理高空间分辨率遥感影像时,影像分割质量对后续影像的信息提取结果影响很大。本文主要针对高分辨率影像分割中地物多尺度的问题,提出了一种基于多层优选尺度的高分辨率影像分割算法。该算法首先采用一系列规律变化的尺度对高分辨率影像进行多尺度分割,然后通过单分割层全局标准差的变化与尺度的关系确定一组最优分割尺度。在此基础上,通过各优选分割层之间的包含关系,局部建立多层次对象树,从整体上形成影像森林;通过局部同质性异质性综合评价指数的比较及父层光谱特征的限制来选取多层次对象树中的优势对象,从而获得最终的高分辨率影像分割结果。最后,本文分别采用了Geoeye和ZY3多光谱影像进行了2组分割实验,结果表明本文算法能有效地提高正常分割影像对象的比例。 |
其他语种文摘
|
The quality of image segmentation has a great impact on the results of information extraction from high spatial resolution remote sensing imagery when the object-based method is employed. During the segmentation of high spatial resolution remote sensing images, the scale parameter directly affects the construction of segmented image objects. A small scale is likely to produce broken image objects, while a large scale probably results in the mixed image objects. To solve this problem, an image segmentation framework based on a set of optimal scales is proposed in this paper. First of all, the high spatial resolution remote sensing image is processed using multi-scale segmentation methods with respect to a group of regularly distributed scales. Then the relationship between the global standard deviation of a single segmented layer and its corresponding scale is determined, from which a group of optimal scales are selected. Since the object in a layer that is segmented by a big scale parameter contains the corresponding object in a layer that is segmented by a small scale parameter, a hierarchical tree with nodes of multi-scale image objects can be created. Within this hierarchical tree, the image object of the layer that is segmented by the maximum scale is set as the root. In this manner, each image object of the layer that is segmented by the maximum scale can generate a hierarchical tree, which all together forms the image forest. Two types of features are considered when the optimal image object is selected from each hierarchical tree, which are the comprehensive evaluation index and the spectral features. The comprehensive evaluation index keeps a balance between the homogeneity and heterogeneity of the image objects. And the spectral features of the children nodes should be consistent with the parent nodes in order to dismiss the mixed image objects. Finally, the segmented result is created after the optimal image objects from all hierarchical trees are selected. In the experiment presented in this paper, the Geoeye and ZY3 images are adopted. Results show that the proposed method can effectively improve the percentage of properly segmented image objects. |
来源
|
地球信息科学学报
,2016,18(5):632-638 【核心库】
|
关键词
|
高分辨率影像
;
分割
;
多尺度
;
多层次对象树
;
综合评价指数
|
地址
|
1.
浙江工业大学计算机学院, 浙江省海洋大数据挖掘与应用重点实验室, 杭州, 310023
2.
中国地质大学(北京)信息工程学院, 北京, 100083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家自然科学基金
;
浙江省海洋大数据挖掘与应用重点实验室开放课题项目
;
国家高分辨率对地观测系统重大专项
|
文献收藏号
|
CSCD:5694335
|
参考文献 共
21
共2页
|
1.
Li X. Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA.
Remote Sensing,2014,6(11):11372-11390
|
CSCD被引
8
次
|
|
|
|
2.
Myint S W. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery.
Remote Sensing of Environment,2011,115(5):1145-1161
|
CSCD被引
70
次
|
|
|
|
3.
Chen Y. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas.
Advances in Space Research,2009,43(7):1101-1110
|
CSCD被引
15
次
|
|
|
|
4.
Cleve C. Classification of the wildland-urban interface: a comparison of pixel-and object-based classifications using high-resolution aerial photography.
Computers, Environment and Urban Systems,2008,32(4):317-326
|
CSCD被引
13
次
|
|
|
|
5.
Michel J. Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images.
IEEE Transactions on Geoscience and Remote Sensing,2015,53(2):952-964
|
CSCD被引
13
次
|
|
|
|
6.
Wang M. Segmentation of high spatial resolution remote sensing imagery based on hard-boundary constraint and two-stage merging.
IEEE Transactions on Geoscience and Remote Sensing,2014,52(9):5712-5725
|
CSCD被引
8
次
|
|
|
|
7.
Sziranyi T. Segmentation of remote sensing images using similarity-measure-based fusion-MRF model.
IEEE Geoscience and Remote Sensing Letters,2014,11(9):1544-1548
|
CSCD被引
5
次
|
|
|
|
8.
Sammouda R. Adapting artificial hopfield neural network for agriculture satellite image segmentation.
Proceedings of the International Conference on Computer Applications Technology,2013
|
CSCD被引
1
次
|
|
|
|
9.
邓富亮. 引入松弛因子的高分辨率遥感影像自动多层次分割.
遥感学报,2013,17(6):1492-1507
|
CSCD被引
1
次
|
|
|
|
10.
沈占锋. 高分辨率遥感影像多尺度均值漂移分割算法研究.
武汉大学学报·信息科学版,2010,35(3):313-317
|
CSCD被引
26
次
|
|
|
|
11.
Liu J. A new segmentation method for very high resolution imagery using spectral and morphological information.
ISPRS Journal of Photogrammetry and Remote Sensing,2015,101:145-162
|
CSCD被引
7
次
|
|
|
|
12.
Wang C. A novel multi-scale segmentation algorithm for high resolution remote sensing images based on wavelet transform and improved JSEG algorithm.
Optik-International Journal for Light and Electron Optics,2014,125(19):5588-5595
|
CSCD被引
7
次
|
|
|
|
13.
Zhang X. Hybrid region merging method for segmentation of high-resolution remote sensing images.
ISPRS Journal of Photogrammetry and Remote Sensing,2014,98:19-28
|
CSCD被引
8
次
|
|
|
|
14.
邓富亮. 高分辨率影像分割的分形网络演化改进方法.
地球信息科学学报,2014,16(1):95-101
|
CSCD被引
7
次
|
|
|
|
15.
eCognition Developer.
eCognition developer 8.7: reference book,2011
|
CSCD被引
1
次
|
|
|
|
16.
何敏. 面向对象的最优分割尺度计算模型.
大地测量与地球动力学,2009,29(1):106-109
|
CSCD被引
32
次
|
|
|
|
17.
Witharana C. Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ed2).
ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:108-121
|
CSCD被引
10
次
|
|
|
|
18.
刘大伟. 一种基于对象相似性的遥感影像最优分割尺度评价方法.
大地测量与地球动力学,2013,33(6):137-140
|
CSCD被引
4
次
|
|
|
|
19.
陈春雷. 面向对象的遥感影像最优分割尺度评价.
遥感技术与应用,2011,26(1):96-102
|
CSCD被引
37
次
|
|
|
|
20.
李秦. 最优分割尺度下的多层次遥感地物分类实验分析.
地球信息科学学报,2011,13(3):410-417
|
CSCD被引
1
次
|
|
|
|
|