含轴向运动效应的裂纹梁横向振动频率研究
Investigations on Transversal Vibration Characteristics of Cracked Axially Moving Beams
查看参考文献13篇
文摘
|
针对含轴向运动效应开口裂纹梁,借助裂纹梁连续等效刚度模型,将裂纹效应引入轴向运动梁的横向振动方程.应用传递矩阵法推导了求解其振动频率的特征方程,计算得到裂纹和运动参数连续变化情况下梁的一阶和二阶固有频率数值解.对裂纹和轴向运动参数对梁的振动频率的联合影响机理进行了分析,研究表明,对于梁的一阶和二阶固有频率,轴向运动速度和裂纹深度具有耦合作用效应.裂纹加深使得由轴向速度带来的频率衰减加速;同时,速度提升导致由裂纹引起的频率衰减变得更加剧烈.相较于二阶频率,耦合作用效应对于一阶频率表现得更加显著. |
其他语种文摘
|
For axially moving beams with opening cracks, by means of the continuous equivalent stiffness model, the crack effect was introduced into the governing equations of their transversal vibration. Using the transfer matrix method, characteristic equations were derived to obtain the vibration frequencies. The numerical solutions of the first two frequencies of the beams were obtained while the crack and axially moving parameters change continuously. The effects of the crack and axially moving parameters on the vibration frequencies were investigated. The results showed that crack depth and axial moving parameters impose coupling effect on the first two frequencies rather than influence them independently. Deeper crack leads to faster frequency attenuation caused by axial velocity, while faster axial moving makes the frequency attenuation more significant caused by the cracks. Compared with the second frequency, such effects are more significant for the first frequency. |
来源
|
力学季刊
,2016,37(1):74-80 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2016.01.008
|
关键词
|
裂纹梁
;
轴向运动梁
;
横向振动
;
振动频率
|
地址
|
西南交通大学力学与工程学院, 四川, 成都, 610031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
力学 |
基金
|
国家自然科学基金
;
重庆市教委项目
|
文献收藏号
|
CSCD:5674396
|
参考文献 共
13
共1页
|
1.
胡家顺. 裂纹梁振动分析和裂纹识别方法研究进展.
振动与冲击,2007,26(11):146-152
|
CSCD被引
34
次
|
|
|
|
2.
Papadopoulos C A. Coupling longitudinal and bending vibrations of a cracked shaft with an open crack.
Journal of Sound and Vibration,1987,117(1):81-93
|
CSCD被引
44
次
|
|
|
|
3.
Zheng D Y. Vibration and stability of cracked hollow-sectional beams.
Journal of Sound and Vibration,2003,267:933-954
|
CSCD被引
16
次
|
|
|
|
4.
李学平. 含多处裂纹梁的振动分析.
应用力学学报,2007,24(1):66-68
|
CSCD被引
13
次
|
|
|
|
5.
Xiang J W. Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm.
International Journal of Solids and Structures,2008,45(17):4782-4792
|
CSCD被引
2
次
|
|
|
|
6.
Chondros T G. A continuous cracked beam vibration theory.
Journal of Sound and Vibration,1998,215(1):17-34
|
CSCD被引
21
次
|
|
|
|
7.
Dimarogonas A D. Vibration of a beam with a breathing crack.
Journal of Sound and Vibration,2001,239(1):57-67
|
CSCD被引
1
次
|
|
|
|
8.
Swamidas A S J. Identification of cracking in beam structures using Timoshenko and Euler formulations.
Journal of Engineering Mechanics,2004,130(11):1297-1308
|
CSCD被引
11
次
|
|
|
|
9.
冯志华. 直线运动柔性梁非线性动力学——主参数共振与内共振联合激励.
振动工程学报,2004,17(2):126-131
|
CSCD被引
23
次
|
|
|
|
10.
Tang Y Q. Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions.
International Journal of Mechanical Sciences,2008(50):1449-1458
|
CSCD被引
1
次
|
|
|
|
11.
丁虎. 超临界轴向运动梁横向非线性振动频域分析.
固体力学学报,2011,32(4):360-364
|
CSCD被引
3
次
|
|
|
|
12.
马国亮. 高速运动梁的临界速度、固有频率和模态函数.
力学季刊,2013,34(4):541-545
|
CSCD被引
3
次
|
|
|
|
13.
吕海炜. 轴向运动软夹层梁横向振动分析.
振动与冲击,2014,33(2):41-51
|
CSCD被引
10
次
|
|
|
|
|