带有新型涡激振动抑制罩的圆柱体的水动力特性
INVESTIGATION IN HYDRODYNAMICS OF A CIRCULAR CYLINDER WITH THE NEW SUPPRESSING SHROUD FOR VORTEX-INDUCED VIBRATION 1)
查看参考文献29篇
文摘
|
通过模型实验和数值模拟计算,研究了带有涡激振动抑制罩的圆截面柱体的水动力特性.模型实验主要测试了柱体上附加谐波型和类圆锥型涡激振动抑制罩的单摆结构在不同流速下发生涡激振动的性质;数值模拟则针对谐波型和圆锥型扰动,在雷诺数Re为10~2到10~5范围内,研究其水动力参数,如阻力、升力和涡脱落频率等,随扰动波长和波动强度的变化.模型实验结果表明,在直圆柱开始发生共振的流速下,带抑制罩的柱体的振幅显著降低,而在更高流速下则显著增大.数值模拟结果表明,谐波型和圆锥型扰动具有相似的水动力特性;且在不同Re时,阻力、升力和涡脱落频率具有相似的变化规律;随波动强度的增大,阻力一般逐渐增大,升力则在多数情况下先减小而后增大,而涡脱落频率一般逐渐减小. |
其他语种文摘
|
Through model experiment and numerical simulation, the hydrodynamics of the circular-section cylinder with a suppressing shroud for vortex-induced vibration is investigated. The model experiment for the vortex-induced vibration is carried out for the pendulum with the harmonic and conic-like radial disturbances at different incoming flow velocities. As for the simulation for the harmonic and conic disturbances, the hydrodynamic parameters, like drag, lift and vortex-shedding frequency, varied with the wavelength and wave steepness are studied at Reynolds numbers from 10~2 to 10~5. The model experiment has shown that the amplitude with the shroud does be reduced at the velocity at which the synchronization of a straight circular cylinder is occurred, but obviously increased at higher velocities. Numerical results have shown that the hydrodynamics of the harmonic disturbance is similar to that of the conic disturbance. And variations of the drag, lift and vortex-shedding frequency are similar for the different Reynolds numbers. With the increasing wave steepness, the drag is generally increased, while the lift is reduced firstly and then increased in most cases, and vortexshedding frequency is generally decreased. |
来源
|
力学学报
,2016,48(2):307-317 【核心库】
|
DOI
|
10.6052/0459-1879-14-300
|
关键词
|
涡激振动
;
抑制
;
圆柱体
;
水动力学
|
地址
|
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家重大科学仪器设备开发专项
|
文献收藏号
|
CSCD:5670485
|
参考文献 共
29
共2页
|
1.
Sarpkaya T. A critical review of the intrinsic nature of vortexinduced vibrations.
J Fluids Struct,2004,19:389-447
|
CSCD被引
177
次
|
|
|
|
2.
Williamson C H K. Vortex-induced vibrations.
Annu Rev Fluid Mech,2004,36:413-455
|
CSCD被引
180
次
|
|
|
|
3.
Williamson C H K. A brief review of recent results in vortex-induced vibrations.
J Wind Eng Ind Aerodyn,2008,96:713-735
|
CSCD被引
114
次
|
|
|
|
4.
Gabbai R D. An overview of modeling and experiments of vortex-induced vibration of circular cylinders.
J Sound Vib,2005,282:575-616
|
CSCD被引
87
次
|
|
|
|
5.
Owen J C. Passive control of VIV with drag reduction.
J Fluids Struct,2001,15:597-605
|
CSCD被引
16
次
|
|
|
|
6.
宋吉宁. 三根附属控制杆对海洋立管涡激振动抑制作用实验研究.
海洋工程,2009,27(3):23-29
|
CSCD被引
14
次
|
|
|
|
7.
Korkischko I. Suppression of vortex-induced vibration using moving surface boundary-layer control.
J Fluids Struct,2012,34:259-270
|
CSCD被引
10
次
|
|
|
|
8.
Lee L. The dynamic stability of short fairlings.
Offshore Tech. Conf., OTC-17125,2005
|
CSCD被引
1
次
|
|
|
|
9.
Assi G R S. Low drag solutions for suppressing vortex-induced vibration of circular cylinders.
J Fluids Struct,2009,25:666-675
|
CSCD被引
20
次
|
|
|
|
10.
Huang S. VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by use of helical grooves.
J Fluids Struct,2011,27:1124-1133
|
CSCD被引
11
次
|
|
|
|
11.
King R. Suppressing full-scale riser VIV with the VT suppressor.
ASME 2013, 32nd Int. Conf. Ocean, Offshore and Arctic Eng. OMAE 2013. OMAE2013-11642,2013
|
CSCD被引
1
次
|
|
|
|
12.
Korkischko I. Experimental investigation of flowinduced vibration on isolated and tandem circular cylinders fitted with strakes.
J Fluids Struct,2010,26:611-625
|
CSCD被引
14
次
|
|
|
|
13.
杨加栋. 螺旋列板- 深水立管涡激振动抑制装置.
海洋技术,2010,29(4):88-92
|
CSCD被引
5
次
|
|
|
|
14.
Sarpkaya T.
Mechanics of Wave Forces on Offshore Structures,1981
|
CSCD被引
29
次
|
|
|
|
15.
Kumar R A. Passive control of vortexinduced vibrations:an overview.
Recent Patents on echanical Engineering,2008,1:1-11
|
CSCD被引
16
次
|
|
|
|
16.
吴浩. 深海立管涡激振动被动抑制措施的研究.
中国海洋平台,2009,24(4):1-8
|
CSCD被引
18
次
|
|
|
|
17.
Bearman P W. Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines.
J Fluids Struct,1998,12:123-130
|
CSCD被引
17
次
|
|
|
|
18.
Owen J C. Suppressing Karman vortex shedding by use of sinuous circular cylinders.
Bulletin of the American Physcial Society,1999,44:124
|
CSCD被引
3
次
|
|
|
|
19.
Darekar R M. Flow past a square-section cylinder with a wavy stagnation face.
J Fluid Mech,2001,426:263-295
|
CSCD被引
14
次
|
|
|
|
20.
Lin L M. Mechanism Responsible for the Complete Suppression of Kármán Vortex in Flows Past a Wavy Square-Section Cylinder.
Chinese Physcis Letters,2010,27:034702
|
CSCD被引
4
次
|
|
|
|
|