某型无人机三维空间航迹跟踪控制方法研究
Study of Flight Path Tracking and Control of an UAV in 3D Space
查看参考文献14篇
文摘
|
研究某型无人机三维空间航迹跟踪问题,通过在理想航迹上选取一系列航迹点,将航迹跟踪问题转换为航迹点跟踪问题。建立了无人机的动力学模型,将无人机的速度坐标系对准航迹点所在的理想坐标系,使位置跟踪问题转化为姿态跟踪问题。推导了无人机的制导律,并利用滑模变结构控制理论和反步控制理论分别设计了姿态控制器和速度控制器,姿态控制器使飞行器的速度矢量方向对准航迹点所在的方向,然后利用速度控制器控制速度的大小使飞行器到达预定航迹点。对整个制导、控制系统进行了全系统仿真,仿真结果表明:所设计的控制器具有较高的跟踪精度,且具有较强的抗干扰能力。 |
其他语种文摘
|
A flight path tracking problem is studied for underactuated UAV in 3D space. The question of flight path tracking is transformed into way-point tracking by choosing a serious point on flight path. A mathematic model is established.The speed frame is alined to the desired frame so that position tracking is converted into attitude tracking. The guidance law is also deduced, and the theories of sliding variable structure and back-stepping are used to design the attitude controller and velocity controller. The direction of velocity vector is aligned to the position of a way-point by using the attitude controller. The speed of UAV is controlled by the velocity controller to make the UAV closing to a way-point. The guidance and control systems are simulated. The result shows that the designed controller is perfect in tracking and have a strong robustness. |
来源
|
兵工学报
,2016,37(1):64-70 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2016.01.010
|
关键词
|
控制科学与技术
;
反步控制
;
滑模变结构控制
;
无人机
;
航迹点跟踪
;
Lyapunov函数
|
地址
|
1.
南京理工大学, 瞬态物理国家重点实验室, 江苏, 南京, 210094
2.
南京理工大学能源与动力工程学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航空 |
基金
|
国家自然科学基金
;
江苏省高等学校研究生创新计划项目
|
文献收藏号
|
CSCD:5658931
|
参考文献 共
14
共1页
|
1.
Enns D. Dynamic invention-an evolving methodology for flight control design.
International of Control,1994,59(1):71-91
|
CSCD被引
13
次
|
|
|
|
2.
Sieberling S. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction.
Jornal of Guidance, Control and Dynamics,2010,33(6):1732-1742
|
CSCD被引
34
次
|
|
|
|
3.
刘芳. 应用Lyapunov方法分析自旋导弹动态逆控制器鲁棒性.
北京航空航天大学学报,2013,39(1):132-137
|
CSCD被引
3
次
|
|
|
|
4.
陶冶. 一种微小型无人机带死区变增益PID自适应控制器的设计与实现.
自动化学报,2008,34(6):716-721
|
CSCD被引
7
次
|
|
|
|
5.
刘重. 基于反步法和非线性动态逆的无人机三维航路跟踪制导控制.
兵工学报,2014,35(12):2030-2040
|
CSCD被引
6
次
|
|
|
|
6.
Khalil H K.
Nonlinear systems.(3rd ed.),2002
|
CSCD被引
2
次
|
|
|
|
7.
Wibowo S S.
Aircraft flight dynamics control and simulation-using MATLAB and SIMULINK: cases and algorithm, apporach,2007
|
CSCD被引
1
次
|
|
|
|
8.
Egeland O.
Modeling and simulation for automatic control,2002
|
CSCD被引
3
次
|
|
|
|
9.
Kristiansen R.
Dynamic synchronization of spacecraft-modeling and coordinated control of leader-follower spacecraft formations,2008
|
CSCD被引
2
次
|
|
|
|
10.
Oland E. Adapative flight control with constrained actuation.
2014 American Control Conference,2014
|
CSCD被引
2
次
|
|
|
|
11.
Oland E. Underactuated way point tracking of a fixed-wing UAV.
Proceedings of the 2nd IFAC Workshop on Research, Education and Development of Unmanned Aerial Systems,2013
|
CSCD被引
1
次
|
|
|
|
12.
Shima T. Sliding-mode control for integrated missile autopilot guidance.
Journal of Guidance, Control, and Dynamics,2006,29(2):250-260
|
CSCD被引
67
次
|
|
|
|
13.
Roberts A. Adaptive position tracking of VTOL UAVs.
IEEE Transactions on Robotics,2011,27(1):129-142
|
CSCD被引
12
次
|
|
|
|
14.
Slotine J E. Adaptive manipulator control:a case study.
IEEE Transaction on Automatic Control,1998,33(11):995-1003
|
CSCD被引
14
次
|
|
|
|
|