1981-2014年西藏各时次气温的变化趋势分析
Spatial-temporal change of air temperature at 02, 08, 14 and 20 Bejing time over Tibet during 1981-2014
查看参考文献31篇
文摘
|
利用西藏自治区38个气象站点1981-2014年逐日02:00、08:00、14:00和20:00北京时4个时次气温数据,采用线性回归、Mann-Kendall非参数检验等方法,分析了近34年来西藏时次气温变化的时空分布、突变特征,并探讨了气温变化率与经纬度、海拔高度之间的关系。结果表明:近34年西藏四季各时次气温表现一致的升高趋势,升温率为0.14~0.80 ℃/10a,以冬季升温最为显著。在各时次中,除夏季08时升温率大之外,其他三季均以14时升温率最大。各站年时次气温最大升温率为0.36~0.94 ℃/10a(P < 0.001),只有32%的站点出现在08时,主要分布在昌都市大部、阿里地区大部以及那曲、拉萨、日喀则等站点,其余站点都出现在14时。春、秋季时次气温升温率与经度有关,西部大于东部;冬季时次气温升温最大区域主要在高海拔和纬度较高地区,夏季气温升幅最大区域位于较高纬度。20世纪80年代四季和年各时次气温均为负距平,而21世纪最初的10年各时次气温一年四季都为正距平。在时间转折上,34年来西藏年、季绝大部分时次的气温都发生了气候突变,夏季4个时次气温突变时间都发生在21世纪最初的10年;冬季02时和08时气温突变点发生20世纪90年代末,14时和20时气温的突变点却出现在21世纪最初的10年。影响西藏高原气温变化的因素有很多,主要包括地形、高原内部气象要素以及外部环流影响等。 |
其他语种文摘
|
Based on 6- hourly (02:00, 08:00, 14:00 and 20:00 Bejing time (BJT)) air temperature data of 38 meteorological stations over Tibet from 1981 to 2014, the spatialtemporal distribution and climate abrupt characteristics of air temperature are analyzed by using the methods including linear regression and Mann- Kendall test. Also, the correlation between the change rates of surface air temperature and latitude (longitude, and altitude) is discussed. The results showed that, the seasonal air temperature in Tibet exhibits unanimously increasing trend with a rate of 0.14- 0.80 ℃/10a during the past 34 years, and the most significant increase occurred in winter. In terms of the rate per decade for the 6- hourly air temperature observations, 08:00 BJT during summer experienced the highest increasing rate, while 14:00 BJT showed the highest values for the other three seasons. The maximum rate for the increasing air temperature ranges from 0.36 ℃/10a (P < 0.001) to 0.94 ℃/10a (P < 0.001). Among all the 38 stations, there were only 32% (about 12) showing the peak time with the highest rate of changes at 08:00 BJT air temperature, which are predominantly located in much of Qamdo, Ngari prefecture and at weather stations such as Nagqu, Lhasa and Xigaze, while the rest of weather stations showed the highest increasing rate at 14:00 BJT. In spring and autumn, as the increasing rate was related to longitude, it has a larger rate in western than that in eastern Tibet. In winter, the highest increasing rate of air temperature occurred in the regions with higher altitudes and latitudes, and the higher increasing rate of air temperature was observed at higher latitudes in summer. As for the decadal characteristics of 6- hourly air temperature, the 1980s experienced negative anomalies, compared with positive anomalies in the first decade of the 21st century. Additionally, it was found with abrupt change test that at the annual and seasonal scales most of hourly air temperatures have abrupt change. For instance, the abrupt change of all four hourly air temperatures in summer occurred in the first decade of the 21st century. In winter, the abrupt change of air temperature at 02:00 and 08:00 BJT occurred in the late 1990s, while that at 14:00 and 20:00 BJT was found in the first 10 years of the 21st century. As can be seen in the article, many factors such as topography, various meteorological elements in the plateau and the atmospheric circulation play important roles in the surface air temperature change in Tibet. |
来源
|
地理学报
,2016,71(3):422-432 【核心库】
|
DOI
|
10.11821/dlxb201603006
|
关键词
|
时次气温
;
变化趋势
;
时空分布
;
西藏
|
地址
|
1.
中国气象局成都高原气象研究所, 成都, 610071
2.
西藏自治区气候中心, 拉萨, 850001
3.
拉萨市气象局, 拉萨, 850001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家科技部公益性行业科研专项
;
中国气象局气候变化专项
|
文献收藏号
|
CSCD:5653959
|
参考文献 共
31
共2页
|
1.
IPCC.
Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). Climate Change 2013: The Physical Science Basis. Final Draft Underlying Scientific-Technical Assessment,2013
|
CSCD被引
10
次
|
|
|
|
2.
中国气象局.
中国气候与环境演变,2006
|
CSCD被引
16
次
|
|
|
|
3.
姚檀栋. 青藏高原地区的气候变化幅度问题.
科学通报,2000,45(1):98-106
|
CSCD被引
146
次
|
|
|
|
4.
冯松. 青藏高原是我国气候变化启动区的新证据.
科学通报,1998,43(6):633-636
|
CSCD被引
236
次
|
|
|
|
5.
潘保田. 青藏高原:全球气候变化的驱动机与放大器.III.青藏高原降起对气候变化的影响.
兰州大学学报(自然科学版),1996,32(1):108-115
|
CSCD被引
168
次
|
|
|
|
6.
Prell W L. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution.
Nature,1992,360(6405):647-652
|
CSCD被引
71
次
|
|
|
|
7.
Wu G. Thermal controls on the Asian summer monsoon open.
Scientific Reports,2012
|
CSCD被引
6
次
|
|
|
|
8.
吴国雄. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发I.爆发地点.
爆发地点.大气科学,1998,22(6):825-838
|
CSCD被引
92
次
|
|
|
|
9.
Yeh T. Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation.
Archives for Meteorology, Geophysics, and Bioclimatology,1982,31(3):205-220
|
CSCD被引
15
次
|
|
|
|
10.
周秀骥. 青藏高原热力作用对北半球气候影响的研究.
中国科学(D辑:地球科学),2009,39(11):1473-1486
|
CSCD被引
77
次
|
|
|
|
11.
李林. 青藏高原区域气候变化及其差异性研究.
气候变化研究进展,2010,6(3):181-186
|
CSCD被引
101
次
|
|
|
|
12.
丁一汇. 青藏高原与中国其他地区气候突变时间的比较.
大气科学,2008,32(4):794-805
|
CSCD被引
117
次
|
|
|
|
13.
韦志刚. 青藏高原气温和降水的年际和年代际变化.
大气科学,2003,27(2):157-170
|
CSCD被引
192
次
|
|
|
|
14.
吴绍洪. 青藏高原近30年气候变化趋势.
地理学报,2005,60(1):3-11
|
CSCD被引
251
次
|
|
|
|
15.
丁明军. 1971-2012年青藏高原及周边地区气温变化特征及其海拔敏感性分析.
资源科学,2014,36(7):1509-1518
|
CSCD被引
20
次
|
|
|
|
16.
杜军. 西藏高原近40年的气温变化.
地理学报,2001,56(6):682-690
|
CSCD被引
111
次
|
|
|
|
17.
谭春萍. 1971-2007年青藏高原南部气候变化特征分析.
冰川冻土,2010,32(6):1111-1120
|
CSCD被引
38
次
|
|
|
|
18.
You Q. Relationship between temperature trend magnitude,elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data.
Global and Planetary Change,2010,71(1/2):124-133
|
CSCD被引
12
次
|
|
|
|
19.
姜永见. 青藏高原近40年来气候变化特征及湖泊环境响应.
地理科学,2012,32(12):1503-1512
|
CSCD被引
46
次
|
|
|
|
20.
宋辞. 1960年以来青藏高原气温变化研究进展.
地理科学进展,2012,31(11):1503-1509
|
CSCD被引
43
次
|
|
|
|
|