焦化废水中不同极性组分的光谱分析及可生物降解特性
Spectral analysis and biodegradation characteristics of different polar fractions in coking wastewater
查看参考文献36篇
文摘
|
焦化废水是典型难降解工业有机废水,构成其成分的复杂及种类的繁多使其难以实现高效的生物降解过程,制约了水处理的水质达标.为了探明其中生物降解强抑制组分,采用DAX-8大孔树脂将焦化废水分离出疏水酸性组分(HOA) 、疏水碱性组分(HOB) 、疏水中性组分(HON)和亲水性组分(HIS)等4种极性不同的组分,分析了各组分的有机物含量分布,紫外吸收光谱和三维荧光光谱,并用两种方法考察了各组分的可生物降解性能.结果表明,HOA是主要的有机组分,其COD和TOC分别占比55.9%和56.8%; HOA也是主要的芳香物质及荧光组分,而HON是芳香构造化程度最高和类腐殖质占比P_((Ⅲ+Ⅴ))最高的组分;各组分的BOD_5 /COD值及脱氢酶活性的抑制结果显示其难降解程度依次为HON>HOB>HIS>原水>HOA,而HON是焦化废水中生物抑制最强组分,其BOD_5 /COD值仅为0.21 ± 0.02,对脱氢酶活性的抑制达到38.5%; SUVA和P_((Ⅲ+Ⅴ))与可生物降解性的关联分析发现,焦化废水中难降解组分并不都是芳香性化合物造成的,类腐殖质对其中难降解有机组分的指示作用相比SUVA更加灵敏. |
其他语种文摘
|
Coking wastewater is a typical refractory industrial organic wastewater with complicated composition; efficient biodegradation of coking wastewater is hard to achieve,thus making its effluent hard to meet the discharge standard. In order to ascertain its refractory components,DAX-8 resin was applied to separate coking wastewater into four different polar fractions: hydrophobic acids (HOA),hydrophobic bases (HOB),hydrophobic neutrals (HON) and hydrophilic substances (HIS). Then the organic content distribution,UV absorption spectra,three-dimensional fluorescence excitationemission matrix (3D EEMs) of each polar fractions were analyzed and their biodegradability was evaluated. The results showed that HOA was the main organic component,accounting for 55.9% and 56.8% of the total COD and TOC,respectively. HOA was also a major constituent of aromatic and fluorescent substances,but HON had the highest degree of aromatic structure and proportion of humic-like substances P_((Ⅲ+Ⅴ)). The BOD_5 /COD values and the dehydrogenase activity inhibition of different polar fractions showed that the order of refractory degree was HON > HOB > HIS> raw water > HOA. It was found that HON was the most refractory component for biodegradation inhibition in coking wastewater,whose BOD_5 /COD value was only 0.21 ± 0.02 and the inhibition degree of dehydrogenase activity reached 38.5%. The correlations among SUVA,P_((Ⅲ+Ⅴ)) and biodegradability revealed that not all refractory substances in coking wastewater were aromatic compounds,while humic-like matter (Ⅲ+Ⅴ) was more sensitive to indicate refractory substances compared to SUVA. |
来源
|
环境科学学报
,2016,36(3):900-906 【核心库】
|
DOI
|
10.13671/j.hjkxxb.2015.0431
|
关键词
|
焦化废水
;
极性
;
光谱学
;
可生物降解性
;
脱氢酶活性
|
地址
|
1.
华南理工大学环境与能源学院, 广州, 510006
2.
中国科学院广州地球化学研究所, 广州, 510640
3.
华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州, 510006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2468 |
学科
|
行业污染、废物处理与综合利用 |
基金
|
国家自然科学基金项目
;
广东省教育厅学科建设专项资金项目
|
文献收藏号
|
CSCD:5653612
|
参考文献 共
36
共2页
|
1.
Chamarro E. Use of Fenton reagent to improve organic chemical biodegradability.
Water Research,2001,35(4):1047-1051
|
CSCD被引
90
次
|
|
|
|
2.
Chen H L. Biodegradability enhancement of coking wastewater by catalytic wet air oxidation using aminated activated carbon as catalyst.
Chemical Engineering Journal,2012,198/199:45-51
|
CSCD被引
5
次
|
|
|
|
3.
Chen W. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.
Environmental Science & Technology,2003,37(24):5701-5710
|
CSCD被引
890
次
|
|
|
|
4.
Chu L B. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide.
Chemosphere,2012,86(4):409-414
|
CSCD被引
35
次
|
|
|
|
5.
Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy.
Marine Chemistry,1996,51(4):325-346
|
CSCD被引
475
次
|
|
|
|
6.
Cohen E. Fluorescent components of organic matter in wastewater:Efficacy and selectivity of the water treatment.
Water Research,2014,55:323-334
|
CSCD被引
17
次
|
|
|
|
7.
Edzwald J K. Coagulation in drinking water treatment:particles, organics and coagulants.
Water Science & Technology,1993,27(11):21-35
|
CSCD被引
64
次
|
|
|
|
8.
Han Z S. Measuring the activity of heterotrophic microorganism in membrane bioreactor for drinking water treatment.
Bioresource Technology,2013,130:136-143
|
CSCD被引
6
次
|
|
|
|
9.
黄君礼.
紫外吸收光谱法及其应用,1992
|
CSCD被引
46
次
|
|
|
|
10.
Hudson N. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England.
Science of the Total Environment,2008,391(1):149-158
|
CSCD被引
51
次
|
|
|
|
11.
Kitis M. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation.
Water Research,2002,36(15):3834-3848
|
CSCD被引
25
次
|
|
|
|
12.
Lai P. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.
Journal of Hazardous Materials,2007,147(1/2):232-239
|
CSCD被引
44
次
|
|
|
|
13.
Lai P. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process.
Journal of Hazardous Materials,2009,162(2/3):1423-1429
|
CSCD被引
28
次
|
|
|
|
14.
Leenheer J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.
Environmental Science & Technology,1981,15(5):578-587
|
CSCD被引
93
次
|
|
|
|
15.
Li Y M. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen.
Chemosphere,2003,52(6):997-1005
|
CSCD被引
56
次
|
|
|
|
16.
Ou H S. Novel insights into anoxic / aerobic1 /aerobic2 biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis.
Chemosphere,2014,113:158-164
|
CSCD被引
13
次
|
|
|
|
17.
Pala A. Decolorization of a baker's yeast industry effluent by Fenton oxidation.
Journal of Hazardous Materials,2005,127(1/3):141-148
|
CSCD被引
5
次
|
|
|
|
18.
潘霞霞. 焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响.
化工学报,2009,60(12):3089-3096
|
CSCD被引
27
次
|
|
|
|
19.
Park M H. Spectroscopic and chromatographic characterization of wastewater organic matter from a biological treatment plant.
Sensors,2009,10(1):254-265
|
CSCD被引
6
次
|
|
|
|
20.
任源. 焦化废水水质组成及其环境学与生物学特性分析.
环境科学学报,2007,27(7):1094-1100
|
CSCD被引
89
次
|
|
|
|
|