一个基于PHG平台的并行有限元生物分子模拟解法器
A PARALLEL FINITE ELEMENT SOLVER FOR BIOMOLECULAR SIMULATIONS BASED ON THE TOOLBOX PHG
查看参考文献19篇
文摘
|
本文介绍一个面向生物分子模拟的并行有限元解法器,该解法器基于三维并行自适应有限元软件平台PHG,计算并模拟在生物溶液系统在静电场下的扩散过程.该解法器的最新版本在已有算法的基础上,添加了整体求解、含时求解等一些新算法,规范并扩展了边界条件的选取,并整合多项辅助功能,现提供对于Poisson-Nernst-Planck (PNP)方程的两个含时算法和四个稳态算法,以及对于Smoluchowski-Poisson-Boltzmann (SPB)方程的一个稳态算法.解法器可模拟生物分子,离子通道和纳米管等模型,通过有限元方法计算静电场和离子浓度分布,并计算电流强度、反应速率等物理量,可研究离子通道的选择机理,酶的催化反应过程及反应速率等问题.相关软件、工具和进展见www.continuummodel.org. |
其他语种文摘
|
In this paper a parallel finite element solver for biomolecular simulations is introduced. This solver is based on the three dimensional parallel finite element toolbox PHG and able to simulate the diffusion process influenced by electrostatic field in biological solution. The solver is developed from our previous work with new algorithms added, now offering two time-dependent algorithms and four steady-state algorithms for the Poisson-Nernst-Planck equations, while one steady-state algorithm is provided for Smoluchowski-Poisson-Boltzmann equations. The solver is able to simulate the biomolecular models, including ion channel and nanopore, and solve electrostatic field and concentration distributions for all species. Furthermore, current and reaction rate is calculated to study the functions of ion channel and enzyme. |
来源
|
数值计算与计算机应用
,2016,37(1):67-82 【扩展库】
|
关键词
|
解法器
;
PHG
;
生物溶液
;
静电场
;
扩散
;
算法
|
地址
|
LSEC,中国科学院数学与系统科学研究院计算数学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3266 |
学科
|
自动化技术、计算机技术 |
文献收藏号
|
CSCD:5650774
|
参考文献 共
19
共1页
|
1.
Zhang L. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection.
Numer. Math. Theor. Meth. Appl,2009,2(1):65-89
|
CSCD被引
8
次
|
|
|
|
2.
Lu B Z. Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
J. Chem. Phys,2007,127(13):135102
|
CSCD被引
2
次
|
|
|
|
3.
Zhou Y C. Continuum simulations of acetylcholine consumption by acetylcholinesterase: A Poisson-Nernst-Planck approach.
J. Phys. Chem. B,2008,112(2):270-275
|
CSCD被引
2
次
|
|
|
|
4.
Barcilon V. Qualitative properties of steady-state poissonnernst-planck systems: perturbation and simulation study.
SIAM J. Appl. Math,1997,57(3):631-648
|
CSCD被引
3
次
|
|
|
|
5.
Radic Z. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin.
J. Biol. Chem,1997,272:23265-23277
|
CSCD被引
1
次
|
|
|
|
6.
Lu Benzhuo. Kinetics of diffusion-controlled enzymatic reactions with charged substrates.
PMC Biophysics,2010,3:1
|
CSCD被引
1
次
|
|
|
|
7.
Lu B. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions.
J. Comput. Phys,2010,229(19):6979-6994
|
CSCD被引
4
次
|
|
|
|
8.
Tu Bin. Stabilized finite element methods to simulate the conductances of ion channels.
Computer Physics Communications,2015,188:131-139
|
CSCD被引
3
次
|
|
|
|
9.
Tu B. A software platform for continuum modeling of ion channels based on unstructured mesh.
Computational Science & Discovery,2014,7:014002
|
CSCD被引
3
次
|
|
|
|
10.
Lu B Z. Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications.
Commun. in Comput. Phys,2008,3(5):973-1009
|
CSCD被引
6
次
|
|
|
|
11.
Debye P. De la theorie des electrolytes. i. abaissement du point de congelation et phenomenes associes.
Physikalische Zeitschrift,1923,24(9):185-206
|
CSCD被引
10
次
|
|
|
|
12.
Wenxiao P. Numerical calculation of protein-ligand binding rates through solution of the smoluchowski equation using smoothed particle hydrodynamics.
BMC. Biophysics,2015,8(7)
|
CSCD被引
1
次
|
|
|
|
13.
Qiao Yu. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.
J. Chem. Phys,2014,140:174102
|
CSCD被引
4
次
|
|
|
|
14.
Li Hanlin. An ionic concentration and size dependent dielectric permittivity Poisson-Boltzmann model for biomolecular solvation studies.
J. Chem. Phys,2014,141:024115
|
CSCD被引
2
次
|
|
|
|
15.
Andersen O S. Gramicidin channels.
Annu. Rev. Physiol,1984,46:531-548
|
CSCD被引
1
次
|
|
|
|
16.
Holst M J.
The Poisson-Boltzmann Equation: Analysis and Multilevel Numerical Solution. Tech. rep., Applied Mathematics and CRPC, California Institute of Technology,1994
|
CSCD被引
1
次
|
|
|
|
17.
TetGen Si H. A Delaunay-based quality tetrahedral mesh generator.
ACM Transactions on Mathematical Software,2015,41(2):11:1-11:36
|
CSCD被引
1
次
|
|
|
|
18.
Amestoy P R. Multifrontal parallel distributed symmetric and unsymmetric solvers, ENSEEIHT-IRIT Technical Report Revised version appeared in Comput.
Methods in Appl. Mech. Eng,2000:184, 501-520
|
CSCD被引
1
次
|
|
|
|
19.
Henderson A.
ParaView Guide, A Parallel Visualization Application,2007
|
CSCD被引
1
次
|
|
|
|
|