生物模板法合成锂离子电池电极材料研究进展
Review on Synthesis of Electrode Materials Derived from Biological Templates for Lithium-ion Batteries
查看参考文献87篇
文摘
|
锂离子电池是一类极具潜力的新型二次化学储能器件,被广泛应用于便携式电子设备、电动交通工具和智能电网等领域。高性能电极材料的设计和合成是获得高能量密度、长循环寿命、高安全性锂离子电池的关键。文章针对锂离子电池电极材料存在制备工艺复杂、结构难以控制、活性物质利用率低、循环稳定性和倍率性能差等问题,从生物资源高效利用角度出发,结合生物材料尺寸均匀、形态多变、结构精密、环境友好等优点,综述了生物模板法合成锂离子电池电极材料的研究进展,并对该领域的发展方向进行了展望。 |
其他语种文摘
|
Lithium-ion batteries are considered as the high-potential secondary energy storage devices, which have been widely applied in many fields, such as portable electronic devices, electric vehicles and large-scale electricity storage in smart or intelligent grids. However, the design and synthesis of high-performance electrode materials are the crucial steps toward the realization of lithium-ion batteries with high energy density, long cycle life and high safety. This review discusses that the comprehensive utilization of biological materials with uniform size, various morphology, elaborate architecture, environmental benignity can overcome several fundamental issues of electrode materials, such as complex preparation, uncontrolled structure, low utilization of active materials, poor cycling stability and rate capability. Meanwhile,it also gives brief suggestions and outlooks on the future research directions in this field. |
来源
|
材料导报
,2016,30(1A):128-135 【核心库】
|
DOI
|
10.11896/j.issn.1005-023X.2016.01.022
|
关键词
|
锂离子电池
;
正极材料
;
负极材料
;
电极材料
;
生物模板
|
地址
|
浙江工业大学材料科学与工程学院, 杭州, 310014
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-023X |
学科
|
化学工业 |
基金
|
国家自然科学基金
;
浙江省自然科学基金
;
浙江省教育厅科研计划项目
;
美国福特汽车公司项目
|
文献收藏号
|
CSCD:5631802
|
参考文献 共
87
共5页
|
1.
Wang Y X. Lithium and lithium ion batteries for applications in microelectronic devices: A review.
J Power Sources,2015,286:330
|
CSCD被引
10
次
|
|
|
|
2.
Liu W. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.
Angew Chem Int Ed,2015,54(15):4440
|
CSCD被引
134
次
|
|
|
|
3.
Diouf B. Potential of lithium-ion batteries in renewable energy.
Renew Energy,2015,76:375
|
CSCD被引
20
次
|
|
|
|
4.
Wang Z Y. Metal oxide hollow nanostructures for lithium-ion batteries.
Adv Mater,2012,24(14):1903
|
CSCD被引
38
次
|
|
|
|
5.
Yuan J L. Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-air batteries.
J Power Sources,2015,278:352
|
CSCD被引
1
次
|
|
|
|
6.
Dutta S A. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications.
Energy Environ Science,2014,7(11):3574
|
CSCD被引
1
次
|
|
|
|
7.
Jayaprakash N. Porous hollow carbon @sulfur composites for high-power lithium-sulfur batteries.
Angew Chem Inte Ed,2011,50(26):5904
|
CSCD被引
123
次
|
|
|
|
8.
Evers S. New approaches for high energy density lithium-sulfur battery cathodes.
Acc Chem Res,2013,46(5):1135
|
CSCD被引
92
次
|
|
|
|
9.
Ji L W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries.
Energy Environ Sci,2011,4(8):2682
|
CSCD被引
58
次
|
|
|
|
10.
Wu H. Designing nanostructured Si anodes for high energy lithium ion batteries.
Nano Today,2012,7(5):414
|
CSCD被引
132
次
|
|
|
|
11.
Tian J. Recent progress in design, synthesis, and applications of one-dimensional TiO_2 nanostructured surface heterostructures: A review.
Chem Soc Rev,2014,43(20):6920
|
CSCD被引
34
次
|
|
|
|
12.
Xu X D. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges.
Nano Today,2014,9(5):604
|
CSCD被引
12
次
|
|
|
|
13.
Xin S. Nanocarbon networks for advanced rechargeable lithium batteries.
Acc Chem Res,2012,45(10):1759
|
CSCD被引
54
次
|
|
|
|
14.
Chiang C Y. Biological templates for antireflective current collectors for photoelectrochemical cell applications.
Nano Lett,2012,12(11):6005
|
CSCD被引
3
次
|
|
|
|
15.
Huang J. Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes.
Nanotechnology,2008,19(2):025602
|
CSCD被引
4
次
|
|
|
|
16.
Zhao Y F. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance.
ACS Nano,2009,3(12):4009
|
CSCD被引
11
次
|
|
|
|
17.
Ryu J. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage.
ACS Nano,2010,4(1):159
|
CSCD被引
6
次
|
|
|
|
18.
Lim A H. Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.
Nanoscale,2012,4(15):4694
|
CSCD被引
4
次
|
|
|
|
19.
Wei C L. Synthesis of biocarbon coated Li_3V_2 (PO_4)_3 /C cathode material for lithium ion batteries using recycled tea.
RSC Adv,2015,5(36):28662
|
CSCD被引
1
次
|
|
|
|
20.
Zhou X Y. Cotton-templated fabrication of hierarchical SnO_2 mesoporous microtubes as the anode material of lithium ion battery.
Mater Lett,2014,120:279
|
CSCD被引
2
次
|
|
|
|
|