纳米化对Fe-20Cr合金在[Cl~-]=0.1 mol/L硼酸缓冲溶液中Cl-吸附行为的影响
Influence of Nanocrystallization on Adsorption Behavior of Cl~- on Fe20Cr Alloy in 0.1 mol/L Cl~- Borate Buffer Solution
查看参考文献26篇
文摘
|
应用X射线光电子能谱(XPS)和第一性原理计算的方法研究了纳米化对Fe20Cr合金在Cl~-浓度为0.1 mol/L的硼酸缓冲溶液中Cl~-吸附行为的影响。结果表明, Cr对Cl-吸附行为有两方面的影响: 根据理论计算结果, 随着界面处Cr元素含量的增加Cl~-的吸附能逐步降低, 易于Cl~-的吸附; 但是在实际环境中Cr含量的增大导致合金更易于形成Cr氧化物的钝化膜, 从而阻止Cl~-的吸附行为。纳米化加速了Cr元素的扩散行为, 导致Cr元素在钝化膜内及钝化膜/金属界面的富集。由此可见, 纳米化抑制了Cl~-吸附及在钝化膜内的扩散行为, 提高了钝化膜的耐蚀能力。 |
其他语种文摘
|
The effect of nanocrystallization on the adsorption of Cl~- on Fe20Cr alloy in [Cl~-] =0.1 mol/L borate buffer solution was investigated by means of X-ray photoelectron spectrum(XPS) and calculations per the first-principles. The results show that the influence of Cr on Cl~- adsorption behavior could be described as the following two aspects : the one, in view of the calculation per the first-principles, is that the adsorption energy decrease with the increasing Cr content at the interface of passive film/alloy, which is conducive to the adsorption of Cl~-; the other is that the Cr enrichment may also facilitate the formation of passivation film, which inhibit the Cl~- adsorption. Nanocrystallization may enhance the diffusivity of Cr, which leads to the enrichment of Cr within the passive film as well as at the interface of passive film/alloy. Thus, nanocrystallization can inhibit the adsorption and the inward migration of Cl~-, and finally enhance the corrosion resistance of the alloy. |
来源
|
材料研究学报
,2016,30(1):6-14 【核心库】
|
DOI
|
10.11901/1005.3093.2015.345
|
关键词
|
金属材料
;
纳米化
;
XPS
;
第一性原理计算
;
Fe20Cr合金
;
Cl~-吸附
|
地址
|
1.
大连理工大学, 大连, 116024
2.
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
化学 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:5624139
|
参考文献 共
26
共2页
|
1.
Pistorius P C. Metastable pitting corrosion of stainless steel and the transition to stability.
Phil. Trans. R. Soc. Lond. A,1992,341:531
|
CSCD被引
8
次
|
|
|
|
2.
Sato N. A theory for breakdown of anodic oxide films on metals.
Electrochim. Acta,1971,16:1683
|
CSCD被引
12
次
|
|
|
|
3.
Marcus P. Localized corrosion(pitting): A model of passivity breakdown including the role of the oxide layer nanostructure.
Corrosion Science,2008,50:2698
|
CSCD被引
22
次
|
|
|
|
4.
Abd Ei Haleem S M. Environmental factors affecting the corrosion behavior of reinforcing steel Ⅳ, Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions.
Corrosion Science,2010,52:1675
|
CSCD被引
13
次
|
|
|
|
5.
Rosalbino F. Investigation of passivity and its breakdown on Fe3Al- Si and Fe3Al-Ge intermetallics in chloride- containing solution.
Corrosion Science,2014,85:394
|
CSCD被引
4
次
|
|
|
|
6.
Zeiger W. Corrosion behavior of a nancrystalline FeAl8 alloy.
Nanostructured Materials,1995,6:1013
|
CSCD被引
17
次
|
|
|
|
7.
Youssef Kh M S. Improved corrosion behavior of nanocrystalline zinc produced by pulse- current electrodeposition.
Corros.Sci,2004,46:51
|
CSCD被引
28
次
|
|
|
|
8.
Wang L P. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution.
Scripta. Mater,2006,55:657
|
CSCD被引
27
次
|
|
|
|
9.
Wang X Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel.
Electrochim. Acta,2002,47:3939
|
CSCD被引
36
次
|
|
|
|
10.
Pan C. Pitting corrosion of 304ss nanocrystalline thin film.
Corros. Sci,2013,73:32
|
CSCD被引
14
次
|
|
|
|
11.
Liu L. Influence of nanocrystallization on passive behavior of Ni- based superalloy in acidic solutions.
Electrochim. Acta,2007,52:2392
|
CSCD被引
14
次
|
|
|
|
12.
Liu L. Influence of micro-structure on corrosion behavior of a Ni- based superalloy in 3.5% NaCl.
Electrochimica. Acta,2007,52:7193
|
CSCD被引
17
次
|
|
|
|
13.
Zhang B. Electrochemical corrosion behavior of microcrystalline aluminium in acidic solutions.
Corrosion Science,2007,49:2071
|
CSCD被引
10
次
|
|
|
|
14.
Yang W P. Resistance to pitting and chemical composition of passive films of a Fe-17Cr alloy in chloride-containing acid solution.
J. Elctrochem.Soc,1994,141:2669
|
CSCD被引
1
次
|
|
|
|
15.
Maurice V. XPS and STM study of passive films formed on Fe22Cr (110) single- crystal surfaces.
J. Elctrochem. Soc,1996,143:1182
|
CSCD被引
8
次
|
|
|
|
16.
Han P D. Combined first principle and experimental study of oxide/alloy interface evolution during hot rolling 430 stainless steels.
Iron making and Steel making,2011,38:530
|
CSCD被引
1
次
|
|
|
|
17.
Kim G M. Effects of interface bonding and defects on boron diffusion at Si/SiO2 interface.
Journal of applied physics,2013,114:223705
|
CSCD被引
2
次
|
|
|
|
18.
Shang S L. Vacancy mechanism of oxygen diffusivity in bcc Fe: A first-principles study.
Corrosion Science,2014,83:94
|
CSCD被引
9
次
|
|
|
|
19.
Maurice V. Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface.
Nat. Mater,2004,3:687
|
CSCD被引
7
次
|
|
|
|
20.
Payne M C. Iterative minimization techniques for ab initio total- energy calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys,1992,64:1045
|
CSCD被引
556
次
|
|
|
|
|