低温低压条件下辉石粉末的热导率实验分析:对月球及火星表面热环境研究的指示
Laboratory thermal conductivity measurement of pyroxene powder under low temperature and atmospheric pressure conditions: Implication for the studies on lunar and Martian surface thermal environment
查看参考文献34篇
文摘
|
在真空条件下矿物粉末热导率的实验测量,可为我们研究月球及行星表面的热属性和热演化,解译热红外和微波探测数据,开展月球及行星探测载荷设计提供重要的数据参数。本研究主要采用改造后的Hot Disk TPS 2500S导热仪对辉石粉末的热导率进行测量。同时,分析了真空度、温度对辉石粉末热导率的影响。实验结果表明:1)热导率随着真空度的降低呈下降趋势,大气压力在lOOOPa时,辉石粉末热传导机制发生明显改变。在低压条件下(?l000Pa)热导率随真空度的变化趋于平缓;2)辉石粉末热导率随温度的升高而增大,但是增大的幅度在低压和常压条件下存在明显差异。根据实验结果,提出了低压条件下辉石粉末热导率随真空度和温度变化的关系式。本研究表明,在月球和火星表面热环境的研究中,温度和压力对热导率的影响程度是不同的。上述结果对未来开展地外样品的热导率测量提供了重要的参考。 |
其他语种文摘
|
Laboratory studies on thermal conductivities of particulate minerals under vacuum condition can provide essential parameters when determining thermal properties and thermal evolution on lunar and planet surface, interpreting microwave and thermal infrared data and designing lunar explorer. Using modified thermal conductivity measuring instrument (HOT DISK TPS 2500S), pyroxenes powder samples are measured for their thermal conductivities under various vacuum degree and temperature conditions. By doing this, we evaluate the effects of vacuum degree and temperature on thermal conductivity of pyroxene powder. The experimental results show,1) thermal conductivity of pyroxene powder decrease with lower vacuum degree. There is an apparent change of heat conduction mechanism when vacuum degree is around 1000Pa. Under low vacuum degree condition, thermal conductivity changes slowly with atmospheric pressure; 2) Thermal conductivity of pyroxene powder increase with temperature,but in different ways between low and normal atmospheric pressure conditions. With the experimental data, quantitative relationships of thermal conductivity of pyroxene powder and vacuum degree/temperature are given under low atmospheric pressure conditions. Our results imply that vacuum degree and temperature play different roles in thermal conductivity studies on lunar and Martian surface. Thus this study provide a reference for thermal conductivity determination of thermal conductivity in future work. |
来源
|
岩石学报
,2016,32(1):99-106 【核心库】
|
关键词
|
月球
;
火星
;
辉石粉末
;
热导率
;
温度
;
真空度
|
地址
|
1.
中国科学院地球化学研究所月球与行星科学研究中心, 贵阳, 550081
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
中国科学院青年创新促进会项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5618600
|
参考文献 共
34
共2页
|
1.
Bishop J L. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials.
Journal of Geophysical Research: Planets,1995,100(E3):5369-5379
|
CSCD被引
1
次
|
|
|
|
2.
Burns R G. Reflectance spectra of Fe~(2+)-Mg~(2+) disordered pyroxenes: Implications to remote-sensed spectra of planetary surfaces.
Reports of Planetary Geology and Geophysics Program,1990:253-255
|
CSCD被引
1
次
|
|
|
|
3.
Carrier W D. Lunar soil grain size distribution.
The Moon,1973,6(3):250-263
|
CSCD被引
11
次
|
|
|
|
4.
Christensen P R.
The Martian Surface Layer Mars,1992:686-729
|
CSCD被引
1
次
|
|
|
|
5.
Cline D. The thermal properties of powder insulators in the temperature range 300o- 4° K.
Radiative Transfer from Solid Materials,1963:61-81
|
CSCD被引
1
次
|
|
|
|
6.
Cremers C J. Thermal conductivity of lunar fines from Apollo 11.
Proceedings of the 5~(th) Symposium on Thermophysical Properties,1970:391-395
|
CSCD被引
1
次
|
|
|
|
7.
Cremers C J. A thermal conductivity cell for small powdered samples.
Rev. Sci. Instrum,1971,42(11):1694-1696
|
CSCD被引
1
次
|
|
|
|
8.
David C C. Chapter15: Mars atmosphere: History and surface interactions.
Encyclopedia of the Solar System. 2~(nd) Edition,2006:301-314
|
CSCD被引
1
次
|
|
|
|
9.
Fountain J A. Thermal conductivity of particulate basalt as a function of density in simulated lunar and Martian environments.
Journal of Geophysical Research: Planets,1970,75(20):4063-4069
|
CSCD被引
14
次
|
|
|
|
10.
Fulk M M. Evacuated powder insulation for low temperatures.
Progr. Cryog,1959,1:65-84
|
CSCD被引
1
次
|
|
|
|
11.
Golombek M. Martian surface properties from joint analysis of orbital, Earth-based, and surface observations.
The Martian Surface: Composition, Mineralogy, and Physical Properties,2008:384-468
|
CSCD被引
1
次
|
|
|
|
12.
Heiken G H.
Lunar Sourcebook: A User's Guide to the Moon,1991
|
CSCD被引
26
次
|
|
|
|
13.
Horai K. Thermal conductivity of rock-forming minerals.
Journal of Geophysical Research: Planets,1971,76(5):1278-1308
|
CSCD被引
25
次
|
|
|
|
14.
Hudson R S. Photometric properties of Asteroid 4179 Toutatis from lightcurves and a radar-derived physical model.
Icarus,1998,135(2):451-457
|
CSCD被引
3
次
|
|
|
|
15.
Huetter E S. Determination of the effective thermal conductivity of granular materials under varying pressure conditions.
Journal of Geophysical Research: Planets,2008,113(E12)
|
CSCD被引
3
次
|
|
|
|
16.
Jaeger J C. Nature of the surface of the moon.
Nature,1950,166(4233):1026
|
CSCD被引
2
次
|
|
|
|
17.
Jaeger J C. The surface temperature of the moon.
Austr. J. Phys,1953,6(1):10-21
|
CSCD被引
3
次
|
|
|
|
18.
Langseth M G Jr. The Apollo 15 lunar heat-flow measurement.
The Moon,1972,4(3/4):390-410
|
CSCD被引
5
次
|
|
|
|
19.
Presley M A. Thermal conductivity measurements of particulate materials: 1. A review.
Journal of Geophysical Research: Planets,1997,102(E3):6535-6549
|
CSCD被引
3
次
|
|
|
|
20.
Presley M A. Thermal conductivity measurements of particulate materials: 2. Results.
Journal of Geophysical Research: Planets,1997,102(E3):6551-6566
|
CSCD被引
4
次
|
|
|
|
|