暖温带-中温带过渡区4种典型森林土壤呼吸的温度敏感性
Temperature Sensitivity of Soil Respiration in Four Forest Types in Temperate Ecotone, Northeast China
查看参考文献44篇
文摘
|
温度是全球气候变化最重要的生态因子,过渡区生态系统的能量流动和物质循环过程极易受到气候变化的影响。为揭示暖温带-中温带过渡区森林土壤呼吸对温度变化的响应,选择在暖温带-中温带过渡区分布面积较大的长白落叶松(Larixolgensis)、红松(Pinus koraiensis)、油松(Pinus tabuliformis)人工林和天然阔叶混交林4种森林类型,利用Li-8100红外气体分析仪于2010─2013年连续观测土壤呼吸速率,同时利用森林小气候梯度观测系统连续同步观测大气温度、大气降水和土壤温度等环境因子,系统研究了土壤呼吸速率动态及其温度敏感性。结果表明:长白落叶松、红松、油松和阔叶混交林的年平均土壤呼吸速率(Rs,以CO_2计)分别为(2.31±0.01)、(2.07±0.71)、(1.55±0.03)和(2.24±0.02)μmol·m~2·s~(-1);4种森林类型的Rs与10 cm土壤温度(t_(10))均具有极显著的相关关系(P=0.000<0.01);生长季期间落叶松、红松、油松人工林和天然阔叶混交林的Q_(10)值分别为3.32、4.46、4.12和3.59,其中红松人工林Rs对t_(10)的温度变化最敏感,而天然阔叶林和落叶松人工林的敏感性相对较低。本研究还对非生长季(11月─翌年3月)期间长白落叶松人工林的土壤呼吸进行了连续监测,并依据非生长季期间土壤温度的变化,将非生长季期间的土壤呼吸分为冻结期(t_(10-mean):10.0~2.0 ℃)、冻融期(t_(10-mean):0.5~2.0 ℃)和非冻结期(t_(10-mean):>2.0 ℃)3个阶段。结果显示:长白落叶松人工林在非生长季期间仍有微弱的呼吸作用(以CO_2计,0.01~1.38 μmol·m~2·s~(-1)),整个非生长季期间Rs与t_(10)有极显著相关关系(r~2=0.586 3,P=0.000<0.01),非生长季冻结期的Rs与t_(10)无显著相关关系(P=0.503>0.5),冻融期的Rs变化较剧烈,且较冻结期有较明显的增加;整个非生长季落叶松人工林的Q_(10)值为4.65,是生长季的1.40倍。研究结果对进一步阐明气候带过渡区不同森林类型土壤呼吸对气候变化的响应具有重要意义。 |
其他语种文摘
|
Soil carbon efflux in forests is a significant component in the terrestrial carbon cycle. Temperature is the major factor affecting forest soil respiration and very important in the context of global climate change in ecosystems in transition zones are vulnerable to the effects of climate change. Larch (Larix olgensis), Korean pine (Pinus koraiensis), Chinese pine (Pinus tabuliformis) plantations and natural broadleaved mixed forests, which are the major forest types in Northeast China, play important roles in forest ecosystem carbon cycles in China. In this study, a Li-8100 infrared gas analyzer was used to observe the soil respiration rate (Rs) from 2010 to 2013, and a forest gradient microclimate observation system was applied to continuously observe the air temperature, precipitation, soil temperature and other environmental factors. The relationship between Rs and soil temperature moisture in these four forests was analyzed over three years. The results showed that the mean Rs in Larch, Korean pine, and Chinese pine plantations and broadleaved mixed forest were (2.31±0.01), (2.07±0.71), (1.55±0.03) and (2.24±0.02) μmol·m~(-2)·s~(-1), respectively. Moreover, Rs and soil temperature at a depth of 10 cm (t_(10)) were significantly correlated (P=0.000<0.01). The Q_(10) values in the four forests during the growing seasons were 3.32, 4.46, 4.12 and 3.59, respectively. The Rs of Korean pine plantation was more sensitive to t_(10) than the other three forests. Rs was also continuously monitored in a larch plantation during the non-growing season (from November to the following March), which revealed that the Rs in the non-growing season was divided into three stages: the frozen period (t_(10-mean): 10.0~2.0 ℃), freeze-thaw period (t_(10-mean): 0.5~2.0 ℃) and thawing period (t_(10-mean): >2.0 ℃). A weak Rs was observed in larch plantations during the non-growing season (0.01~1.8 μmol·m~(-2)·s~(-1)), and the Rs and t_(10)values were significantly correlated throughout this period (r~2=0.586 3, P=0.000<0.01). Moreover, Rs and t_(10)were not significantly correlated in the frozen period (P=0.503>0.05), Rs changes were more intense during the freeze-thaw period, and were significantly regulated variations when compared with the frozen period. Rs showed a greater increase during the freeze-thaw period than the frozen period. The Q_(10) value of the larch plantation during the non-growing season was 4.65, which was 1.4 times that of the growing season. Overall, these findings suggest that Rs was more sensitive to global climate change during the non-growing season than the growing season for temperate forests. |
来源
|
生态环境学报
,2015,24(11):1757-1764 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2015.11.001
|
关键词
|
土壤呼吸
;
温度敏感性
;
森林
;
东北地区
|
地址
|
1.
内蒙古农业大学生态环境学院, 内蒙古, 呼和浩特, 010019
2.
辽宁省林业科学研究院, 辽宁, 沈阳, 110032
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
林业;环境科学基础理论 |
基金
|
国家林业公益性行业科研专项
;
国家自然科学基金项目
;
辽宁省农业领域青年科技创新人才培养计划
|
文献收藏号
|
CSCD:5601691
|
参考文献 共
44
共3页
|
1.
Bowden R D. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions.
Soil Biology and Biochemistry,1998,30(12):1591-1597
|
CSCD被引
49
次
|
|
|
|
2.
Bubier J. Net ecosystem CO_2 exchange measured by auto chambers during the snow-covered season at a temperate peatland.
Hydrological Processes,2002,16(18):3667-3682
|
CSCD被引
15
次
|
|
|
|
3.
Cox P M. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.
Nature,2000,408(6809):184-187
|
CSCD被引
275
次
|
|
|
|
4.
Decker K L. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont.
Soil Science Society of American Journal,2003,67(4):1234-1242
|
CSCD被引
33
次
|
|
|
|
5.
Deforest J L. Phenophases alter the soil respiration -temperature relationship in an oak -dominated forest.
International journal of biometeorology,2006,51(2):135-144
|
CSCD被引
4
次
|
|
|
|
6.
Fahnestock J T. Wintertime CO_2 efflux from arctic soils:Implications for annual carbon budgets.
Global Biogeochemical Cycles,1999,13(3):775-779
|
CSCD被引
10
次
|
|
|
|
7.
Grogan P. Ecosystem CO_2 production during winter in a Swedish subarctic region:the relative importance of climate and vegetation type.
Global Change Biology,2006,12(8):1479-1495
|
CSCD被引
11
次
|
|
|
|
8.
Grogan P. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms.
Soil Biology and Biochemistry,2004,36(4):641-654
|
CSCD被引
112
次
|
|
|
|
9.
Hanson P J. Oak forest carbon and water simulations:Model intercomparisons and evaluations against independent data.
Ecological Monographs,2004,74(3):443-489
|
CSCD被引
14
次
|
|
|
|
10.
Humphreysa E R. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcutclear cut harvesting.
Agricultural and Forest Meteorology,2006,140(1/4):6-22
|
CSCD被引
1
次
|
|
|
|
11.
Jenkinson D S. Model estimates of CO_2 emissions from soil in response to global warming.
Nature,1991,351:304-306
|
CSCD被引
278
次
|
|
|
|
12.
Kato T. Strong temperature dependence and no moss photosynthesis in winter CO_2 flux for a Kobresia meadow on the Qinghai Tibetan plateau.
Soil Biology and Biochemistry,2005,37(10):1966-1969
|
CSCD被引
27
次
|
|
|
|
13.
Lafleur P M. Annual cycle of CO_2 exchange at a bog peatlandpeat land.
Journal of Geophysical Research,2001,106(D3):3071-3081
|
CSCD被引
21
次
|
|
|
|
14.
Liptzin D. Process-level controls on CO_2 fluxes from a seasonally snow-covered subalpine meadow soil,Niwot Ridge,Colorado.
Biogeochemistry,2009,95(1):151-166
|
CSCD被引
13
次
|
|
|
|
15.
Maier C A. Soil CO_2 evolution and root respiration in 11 year-old loblolly pine plantations as affected by moisture and nutrient availability.
Canadian Journal of Forest Research,2000,30(3):347-359
|
CSCD被引
65
次
|
|
|
|
16.
Matzner E. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review.
European ournal of Soil Science,European Journal of Soil Science,2008,59(2):274-284
|
CSCD被引
66
次
|
|
|
|
17.
Mikan C J. Temperature controls of microbial respiration in arctic tundra soils above and below freezing.
Soil Biology and Biochemistry,2002,34(11):1785-1795
|
CSCD被引
88
次
|
|
|
|
18.
Pavelka M. Dependence of the 10 values on the depth of the soil temperature measuring point.
Plant and Soil,2007,292(1/2):171-179
|
CSCD被引
24
次
|
|
|
|
19.
Prieme A. Natural perturbations,drying-wetting and freezing-thawing cycles,and the emission of nitrous oxide,carbon dioxide and methane from farmed organic soils.
Soil Biology and Biochemistry,2001,33(15):2083-2091
|
CSCD被引
53
次
|
|
|
|
20.
Schimel D S. Grassland biogeochemistry:Links to atmospheric processes.
Climatic change,1990,17(1):13-25
|
CSCD被引
7
次
|
|
|
|
|