球囊霉属真菌与芽孢杆菌M3-4协同作用降低马铃薯青枯病的发生及其机制初探
Combination of Glomus spp. and Bacillus sp. M3-4 promotes plant resistance to bacterial wilt in potato
查看参考文献25篇
文摘
|
丛枝菌根真菌(AMF)和根围促生细菌(PGPR)能在一定程度上拮抗土传病原物、提高植物抗病性而降低病害。本研究旨在(1)确定不同AMF与PGPR组合中,菌间相互作用的关系;(2)评价不同AMF与PGPR组合促进马铃薯生长、降低青枯病(Ralstonia solanacearum)危害的效果;(3)初步探索最佳AMF与PGPR组合降低马铃薯青枯病的作用机制。结果表明,与单接种AMF或PGPR相比,一些AMF与PGPR组合能够促进AMF的侵染和PGPR在马铃薯根围的定殖;AMF与PGPR组合能显著促进马铃薯的生长(如株高、茎粗、地上鲜重、地上干重、薯块重),其中以AMF摩西球囊霉(Glomus mosseae, Gm)与PGPR芽孢杆菌(Bacillus sp.)M3-4菌株组合以及地表球囊霉(G. versiforme, Gv)与M3-4菌株组合促生效果最好。另外,接种AMF和PGPR的组合不同程度降低了马铃薯青枯病的危害,其中也以Gm与M3-4和Gv与M3-4的组合防治效果最佳,防治效果分别为65.2%和69.5%。并且,后者处理的叶片中超氧化物歧化酶、苯丙氨酸解氨酶和过氧化氢酶活性显著高于其他处理,丙二醛含量则显著低于其他处理。实验结果表明,Gm与M3-4以及Gv与M3-4的AMF和PGPR组合能够协同作用大幅促进马铃薯的生长、诱导其防御反应而降低马铃薯青枯病危害。 |
其他语种文摘
|
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) have the activities to antagonize soil-borne pathogens, improve plant disease resistance and finally reduce disease. The study was designed (1) to determine the interaction between AMF (Glomus mosseae,Gm and G. versiforme,Gv) and PGPR; (2) to evaluate the effects of different combinations of AMF and PGPR on potato growth and bacterial wilt disease caused by Ralstonia solanacearum,(3) to explore the mechanisms of reducing bacterial wilt disease. Experimental data showed that the combination of AMF and PGPR promoted the colonization of the AMF or PGPR in potato rhizosphere and the growth of potato plants (such as plant height,stem diameter,fresh weight, dry weight of the shoot and tuber weight) compared with AMF or PGPR alone. Among the tested combinations,the combinations of Bacillus sp. M3-4 and Gm or Gv showed the highest growth-promoting activity. Moreover, inoculation of AMF and PGPR reduced the potato bacterial wilt. The combinations of Bacillus sp. M3-4 and Gm or Gv also showed the highest control efficacy with 65.2% and 69.5%, respectively. The activities of superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL),and catalase (CAT) in leaves inoculated with Gv and M3-4 were significantly higher than that in other treatments,while the content of malondialdehyde (MDA) was lower than that in other treatments. The dataset results indicate that the combinations of PGPR M3-4 and AMF Gm or and Gv promote the growth of potato,induce the defense responses, and thus reduce the occurrence of bacterial wilt in potato. |
来源
|
植物病理学报
,2015,45(6):661-669 【核心库】
|
DOI
|
10.13926/j.cnki.apps.2015.06.013
|
关键词
|
马铃薯
;
青枯菌
;
丛枝菌根真菌
;
根围促生细菌
|
地址
|
1.
青岛农业大学菌根生物技术研究所, 青岛, 266109
2.
中国农业大学农学与生物技术学院, 北京, 100193
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家公益性行业(农业)科研专项
;
山东省科技发展计划项目
;
青岛市科技计划基础研究项目
;
山东省泰山学者建设工程专项
|
文献收藏号
|
CSCD:5594431
|
参考文献 共
25
共2页
|
1.
Qiao J Q. Research progress on bacterial wilt of nightshade family(in Chinese).
植物病理学报,2013,43(1):1-10
|
CSCD被引
2
次
|
|
|
|
2.
Liu B.
Polymorphism of Ralstonia solanacearum (in Chinese),2005
|
CSCD被引
1
次
|
|
|
|
3.
Wang X D. A study on bio-types of Ralstonia solanacearum from potato hostsand comparison of inoculation methods(in Chinese).
中国马铃薯,2010,24(1):38-40
|
CSCD被引
1
次
|
|
|
|
4.
Kong F Y. Efficacy of 20% Qingkuling WP against tobacco bacterial wilt (in Chinese).
中国烟草科学,2004(1):36-37
|
CSCD被引
1
次
|
|
|
|
5.
Yang X N. Toxicity of dazomet and chloropicrin to soil-borne pathogens of ginger (in Chinese).
农药学学报,2011,13(3):331-334
|
CSCD被引
1
次
|
|
|
|
6.
Porcel R. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance.
Plant Mol Biol,2006,60:389-404
|
CSCD被引
16
次
|
|
|
|
7.
Zhu H H. Inhibition of Ralstonia solanacearum by AM fungus Glomus versiforme and the effect on phenols in root (in Chinese).
微生物学通报,2004,31(1):1-5
|
CSCD被引
3
次
|
|
|
|
8.
Chandanie W A. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber.
Plant Soil,2006,286:209-217
|
CSCD被引
9
次
|
|
|
|
9.
Affokpon A. Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes.
Biol. Fertil. Soils,2011,47:207-217
|
CSCD被引
21
次
|
|
|
|
10.
Wang X S. Interactions between arbuscular mycorrhizal fungi and cereal cyst nematode (in Chinese).
植物病理学报,2014,44(1):97-106
|
CSCD被引
1
次
|
|
|
|
11.
Sun J Q. Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi (in Chinese).
植物生理学报,2012,48(9):845-852
|
CSCD被引
1
次
|
|
|
|
12.
Xu L J. Eco-physiological functions of mycorrhizal fungi (in Chinese).
应用生态学报,2012,23(1):285-292
|
CSCD被引
1
次
|
|
|
|
13.
Zhu H H. Influence of AM fungus on Ralstonia solanacearum population and bacterial community structure in rhizosphere (in Chinese).
菌物学报,2005,24(1):137-142
|
CSCD被引
1
次
|
|
|
|
14.
Jiang L. Research on wilt disease resistance of AM mycorrhizal tobacco seedlings(in Chinese).
中国烟草科学,2009,15(6):49-52
|
CSCD被引
1
次
|
|
|
|
15.
Vestberga M. Microbial inoculation for improving the growth and health of micropropagated strawberry.
Applied Soil Ecology,2004,27(3):243-258
|
CSCD被引
16
次
|
|
|
|
16.
Liu R J. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi.
The New Phytologist,1994,128(1):89-92
|
CSCD被引
57
次
|
|
|
|
17.
Liu R J.
Mycorrhizology (in Chinese),2007
|
CSCD被引
4
次
|
|
|
|
18.
Zhao B.
Microbiology experiments (in Chinese),2002:23-54
|
CSCD被引
1
次
|
|
|
|
19.
Bashan Y.
Isolation and characterization of plant growth-promoting rhizobacteria Methods in Plant Molecular Biology and Biotechnology,1993
|
CSCD被引
1
次
|
|
|
|
20.
Liang Y F. Bacterial wilt of potato (Chengdu) preliminary establishment and evaluation of materials resistant to disease nursery (in Chinese).
中国马铃薯,1999,13(2):109-114
|
CSCD被引
1
次
|
|
|
|
|