基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别
Rolling Bearing Performance Degradative State Recognition Based on Mathematical Morphological Fractal Dimension and Fuzzy Center Means
查看参考文献31篇
文摘
|
针对滚动轴承的退化状态识别问题,融合数学形态学与模糊聚类理论,提出一种基于数学形态分形维数与模糊C均值聚类的退化状态识别方法。以数学形态分形维数作为滚动轴承的性能退化特征,从分形角度定量描述其复杂度与不规则度。鉴于不同退化状态边界的模糊性,将模糊C均值聚类方法应用于对退化状态的模糊聚类中,根据最大隶属度原则识别轴承性能退化状态。依托杭州轴承试验研究中心进行滚动轴承疲劳寿命强化试验,采集了滚动轴承从完好到失效的整套全寿命数据,将该方法应用于滚动轴承全寿命周期振动信号中,总体状态识别成功率达到96%. 研究结果表明:该方法计算代价小、效率高,能够有效地识别出滚动轴承的性能退化状态。 |
其他语种文摘
|
In allusion to the degenerative state recognition of rolling bearing, a performance degenerative recognition method based on mathematical morphological fractal dimension (MMFD) and fuzzy center means (FCM) is proposed by combining mathematical morphology and fuzzy assemble theory. MMFD is calculated for the performance degenerative feature of rolling bearing to describe its complexity and irregularity in the view of fractal. In consideration of the fuzziness among different performance degradation boundaries, FCM is introduced into fuzzy clustering for characteristic index, and the performance degradation could be recognized effectively in line with maximum subordinate principle. The fatigue life enhancement test of rolling bearing was carried out to gather the whole life data at Hangzhou Bearing Test & Research Center. The method is applied to the whole life data of rolling bearing, the overall state successful recognition rate reachs 96%. The results show that the method has a small calculating cost and a high efficiency, and can efficiently identify the performance degenerative state of rolling bearings. |
来源
|
兵工学报
,2015,36(10):1982-1990 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2015.10.022
|
关键词
|
机械学
;
特征提取
;
数学形态学
;
模糊聚类
;
退化状态识别
;
滚动轴承
|
地址
|
军械工程学院导弹工程系, 河北, 石家庄, 050003
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5575243
|
参考文献 共
31
共2页
|
1.
Chen B Q. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors.
Mecha-nical Systems and Signal Processing,2012,33(1):275-298
|
CSCD被引
11
次
|
|
|
|
2.
Wang H F. Prognostics and health Mmanagement for complex system based on fusion of model-based approach and data-driven approach.
Physics Procedia,2012,24(24):828-831
|
CSCD被引
1
次
|
|
|
|
3.
Zhang X D. Fault diagnosis of complex system based on nonlinear frequency spectrum fusion.
Measurement,2013,46(7):125-131
|
CSCD被引
1
次
|
|
|
|
4.
袁海文.
工程系统中的智能故障诊断与预测,2013
|
CSCD被引
1
次
|
|
|
|
5.
Patil M S. Bearing signature analysis as a medium for fault detection: a review.
Journal of Tribology,2008,130(1):14-17
|
CSCD被引
10
次
|
|
|
|
6.
Ocak H.
Fault detection, diagnosis and prognosis of rolling element bearings frequency domain methods and hidden markov modeling,2004
|
CSCD被引
1
次
|
|
|
|
7.
Qiu H. Wavelet filter-based weak signature detection method and its application on rolling bearing prognostics.
Journal of Sound and Vibration,2006,289(2):1066-1090
|
CSCD被引
156
次
|
|
|
|
8.
Boskoski P. Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures.
Mechanical Systems and Signal Processing,2012,31(15):369-381
|
CSCD被引
4
次
|
|
|
|
9.
Huang J. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine.
Electric Power Systems Research,2011,81(12):400-407
|
CSCD被引
33
次
|
|
|
|
10.
Zhao S F. Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method.
Mechanical Systems and Signal Processing,2013,40(4):154-177
|
CSCD被引
5
次
|
|
|
|
11.
Zheng J D. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy.
Mechanism and Machine Theory,2013,70(12):441-453
|
CSCD被引
38
次
|
|
|
|
12.
Cong F Y. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis.
Mechanical Systems and Signal Processing,2013,34(1):218-230
|
CSCD被引
16
次
|
|
|
|
13.
Wang X. Fault diagnosis of diesel engine based on adaptive wavelet packet and EEMD-fractal dimension.
Mechanical Systems and Signal Processing,2013(41):581-597
|
CSCD被引
24
次
|
|
|
|
14.
Zhang X M. Calculating the fractal dimension of the diesel vibration signals.
Energy Procedia,2011,13(5):1947-1955
|
CSCD被引
1
次
|
|
|
|
15.
李兵. 形态学广义分形维数在发动机故障诊断中的应用.
振动与冲击,2011,30(10):208-211
|
CSCD被引
10
次
|
|
|
|
16.
李兵. 齿轮故障信号多重分形维数的形态学计算方法.
振动、测试与诊断,2011,31(4):450-453,534
|
CSCD被引
15
次
|
|
|
|
17.
Medjaher K. Condition assessment and fault prognostics of micro electromechanical systems.
Microelectronics Reliability,2014,54(1):143-151
|
CSCD被引
4
次
|
|
|
|
18.
Li Y L. An automatic fuzzy C-means algorithm for image segmentation.
Soft Computing-A Fusion of Foundations, Methodologies and Applications,2010,14(2):123-128
|
CSCD被引
6
次
|
|
|
|
19.
张玲玲. 基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障.
内燃机学报,2011,29(4):332-336
|
CSCD被引
16
次
|
|
|
|
20.
Chaudhuri B B. Texture segmentation using fractal dimension.
IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(1):72-77
|
CSCD被引
87
次
|
|
|
|
|