帮助 关于我们

返回检索结果

基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别
Rolling Bearing Performance Degradative State Recognition Based on Mathematical Morphological Fractal Dimension and Fuzzy Center Means

查看参考文献31篇

文摘 针对滚动轴承的退化状态识别问题,融合数学形态学与模糊聚类理论,提出一种基于数学形态分形维数与模糊C均值聚类的退化状态识别方法。以数学形态分形维数作为滚动轴承的性能退化特征,从分形角度定量描述其复杂度与不规则度。鉴于不同退化状态边界的模糊性,将模糊C均值聚类方法应用于对退化状态的模糊聚类中,根据最大隶属度原则识别轴承性能退化状态。依托杭州轴承试验研究中心进行滚动轴承疲劳寿命强化试验,采集了滚动轴承从完好到失效的整套全寿命数据,将该方法应用于滚动轴承全寿命周期振动信号中,总体状态识别成功率达到96%. 研究结果表明:该方法计算代价小、效率高,能够有效地识别出滚动轴承的性能退化状态。
其他语种文摘 In allusion to the degenerative state recognition of rolling bearing, a performance degenerative recognition method based on mathematical morphological fractal dimension (MMFD) and fuzzy center means (FCM) is proposed by combining mathematical morphology and fuzzy assemble theory. MMFD is calculated for the performance degenerative feature of rolling bearing to describe its complexity and irregularity in the view of fractal. In consideration of the fuzziness among different performance degradation boundaries, FCM is introduced into fuzzy clustering for characteristic index, and the performance degradation could be recognized effectively in line with maximum subordinate principle. The fatigue life enhancement test of rolling bearing was carried out to gather the whole life data at Hangzhou Bearing Test & Research Center. The method is applied to the whole life data of rolling bearing, the overall state successful recognition rate reachs 96%. The results show that the method has a small calculating cost and a high efficiency, and can efficiently identify the performance degenerative state of rolling bearings.
来源 兵工学报 ,2015,36(10):1982-1990 【核心库】
DOI 10.3969/j.issn.1000-1093.2015.10.022
关键词 机械学 ; 特征提取 ; 数学形态学 ; 模糊聚类 ; 退化状态识别 ; 滚动轴承
地址

军械工程学院导弹工程系, 河北, 石家庄, 050003

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:5575243

参考文献 共 31 共2页

1.  Chen B Q. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors. Mecha-nical Systems and Signal Processing,2012,33(1):275-298 CSCD被引 11    
2.  Wang H F. Prognostics and health Mmanagement for complex system based on fusion of model-based approach and data-driven approach. Physics Procedia,2012,24(24):828-831 CSCD被引 1    
3.  Zhang X D. Fault diagnosis of complex system based on nonlinear frequency spectrum fusion. Measurement,2013,46(7):125-131 CSCD被引 1    
4.  袁海文. 工程系统中的智能故障诊断与预测,2013 CSCD被引 1    
5.  Patil M S. Bearing signature analysis as a medium for fault detection: a review. Journal of Tribology,2008,130(1):14-17 CSCD被引 10    
6.  Ocak H. Fault detection, diagnosis and prognosis of rolling element bearings frequency domain methods and hidden markov modeling,2004 CSCD被引 1    
7.  Qiu H. Wavelet filter-based weak signature detection method and its application on rolling bearing prognostics. Journal of Sound and Vibration,2006,289(2):1066-1090 CSCD被引 156    
8.  Boskoski P. Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures. Mechanical Systems and Signal Processing,2012,31(15):369-381 CSCD被引 4    
9.  Huang J. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine. Electric Power Systems Research,2011,81(12):400-407 CSCD被引 33    
10.  Zhao S F. Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method. Mechanical Systems and Signal Processing,2013,40(4):154-177 CSCD被引 5    
11.  Zheng J D. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mechanism and Machine Theory,2013,70(12):441-453 CSCD被引 38    
12.  Cong F Y. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis. Mechanical Systems and Signal Processing,2013,34(1):218-230 CSCD被引 16    
13.  Wang X. Fault diagnosis of diesel engine based on adaptive wavelet packet and EEMD-fractal dimension. Mechanical Systems and Signal Processing,2013(41):581-597 CSCD被引 24    
14.  Zhang X M. Calculating the fractal dimension of the diesel vibration signals. Energy Procedia,2011,13(5):1947-1955 CSCD被引 1    
15.  李兵. 形态学广义分形维数在发动机故障诊断中的应用. 振动与冲击,2011,30(10):208-211 CSCD被引 10    
16.  李兵. 齿轮故障信号多重分形维数的形态学计算方法. 振动、测试与诊断,2011,31(4):450-453,534 CSCD被引 15    
17.  Medjaher K. Condition assessment and fault prognostics of micro electromechanical systems. Microelectronics Reliability,2014,54(1):143-151 CSCD被引 4    
18.  Li Y L. An automatic fuzzy C-means algorithm for image segmentation. Soft Computing-A Fusion of Foundations, Methodologies and Applications,2010,14(2):123-128 CSCD被引 6    
19.  张玲玲. 基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障. 内燃机学报,2011,29(4):332-336 CSCD被引 16    
20.  Chaudhuri B B. Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(1):72-77 CSCD被引 87    
引证文献 2

1 戴邵武 基于粒化模糊熵的机载燃油泵故障诊断 推进技术,2020,41(10):2308-2315
CSCD被引 1

2 王庆锋 数据驱动的滚动轴承实时健康状态评估方法 计算机集成制造系统,2023,29(7):2211-2223
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号