辽河原油好氧生物降解模拟过程中化学组成及其碳同位素值的变化
Variations in chemical and stable carbon isotopic compositions of Liaohe crude oil during aerobic biodegradation simulation
查看参考文献42篇
文摘
|
对辽河盆地中央凸起南部潜山原油进行了好氧生物降解模拟实验,分析了辽河原油在轻度至中度(PM 1~4级)的好氧生物降解过程中化学组分的变化,以及在此过程中原油族组分和正构烷烃单体的稳定碳同位素值的变化。结果显示,饱和烃组分的消耗速率最快,正构烷烃的消耗速率高于异构烷烃,低碳数正构烷烃的消耗速率高于高碳数正构烷烃。正构烷烃的疏水性及其在原油中的相对浓度可能是影响微生物选择性地消耗正构烷烃的主导因素,即低碳数的正构烷烃由于在油水界面上的表面张力较小而更容易被微生物降解。正构烷烃单体(C_(14)~C_(30))稳定碳同位素值在生物降解过程中较稳定,未产生明显的碳同位素分馏效应。正构烷烃的好氧降解产物主要是脂肪酸、醇和CO_2。辽河原油中正构烷烃组分的δ~(13)C值较饱和烃、芳烃、胶质和沥青质组分都要偏重,降解产物中水溶性较低的高碳数脂肪酸和醇大部分进入胶质中,少部分通过氢键缔合和形成酯键等方式进入到沥青质组分中,造成沥青质组分的δ~(13)C值发生相应的变化,即对沥青质的δ~(13)C值产生"拉动效应";而降解产物中高水溶性的低碳数烷基酸和醇会进入水相而脱离原油,导致残余油的整体δ~(13)C值相应变轻。因此,假如易受生物降解的烃类如正构烷烃等的δ~(13)C值与原油的δ~(13)C值差别比较大,那么生物降解过程中随着原油化学组成的改变,原油本身及其族组分的δ~(13)C值均可能发生明显的变化。 |
其他语种文摘
|
Aerobic biodegradation simulations were performed on the Liaohe crude oil samples. Variations in chemical compositions of the oils and stable carbon isotopic compositions of oil fractions and individual n-alkanes were investigated by determining the degraded products in slightly to moderately biodegraded oils. The results showed that saturated hydrocarbons were preferentially degraded, and the normal alkanes were biodegraded prior to iso-alkanes. In addition, n-alkanes with lower carbon numbers were consumed prior to higher carbon number n-alkanes. No significant carbon isotopic fractionation occurred for the n-alkanes (C_(14)~C_(30)) during aerobic biodegradation. Therefore, the relative abundance and the hydrophobicity of n-alkanes should be the dominant factors controlling their degradation. That is, the n-alkanes with lower carbon numbers facilitate access to petroleum degrading microbes as substrates due to lower interfacial tension between oil and water. The aerobic biodegradation products of n-alkanes were mainly fatty acids, aliphatic alcohols and carbon dioxide. The δ~(13)C values of n-alkanes were heavier than those of other fractions in the studied Liaohe crude oil. Most of the oil-soluble fatty acids and aliphatic alcohols were combined into resin fraction while a small portion of them into asphaltene fraction through hydrogen bonds and/or ester bonds, resulting in a δ~(13)C shift to asphaltene fraction. Namely, the biodegradation products of n-alkanes might have a "pull effect" on δ~(13)C of asphaltenes. Whereas the water-soluble fatty acids and carbon dioxide that were dissolved into water phase would result in ~(13)C depletion of the residual oil. Therefore, if δ~(13)C of the hydrocarbons susceptible to biodegradation, such as n-alkanes, is significantly different from that of crude oil, the variation of chemical compositions of crude oil would result in significant changes in the δ~(13)C of both bulk oil and oil fractions during biodegradation. |
来源
|
地球化学
,2015,44(6):581-589 【核心库】
|
关键词
|
生物降解
;
辽河原油
;
稳定碳同位素
;
模拟实验
;
正构烷烃
|
地址
|
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
中国科学院广州地球化学研究所"一三五"规划
|
文献收藏号
|
CSCD:5571950
|
参考文献 共
42
共3页
|
1.
Head I M. Biological activity in the deep subsurface and the origin of heavy oil.
Nature,2003,426(6964):344-352
|
CSCD被引
85
次
|
|
|
|
2.
Larter S. The controls on the composition of biodegraded oils in the deep subsurface-part 1: Biodegradation rates in petroleum reservoirs.
Org Geochem,2003,34(4):601-613
|
CSCD被引
51
次
|
|
|
|
3.
Roadifer R E. Size distribution of world's largest known oil and tar accumulation.
Exploration for Heavy Oil and Natural Bitumen (Abstract Volume). Tulsa: AAPG Studies in Geology 25,1987:3-23
|
CSCD被引
1
次
|
|
|
|
4.
Kim S. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry.
Org Geochem,2005,36(8):1117-1134
|
CSCD被引
26
次
|
|
|
|
5.
Phillippi G T. On the depth, time and mechanism of origin of the heavy to medium gravity naphthenic crude oils.
Geochim Cosmochim Acta,1977,41(1):33-35
|
CSCD被引
2
次
|
|
|
|
6.
Magoon L B. Two oil types on North Slope of Alaska-Implications for exploration.
AAPG Bulletin,1981,65(4):644-652
|
CSCD被引
2
次
|
|
|
|
7.
Peters K E.
The Biomarker Guide, biomarkers and isotopes in petroleum exploration and earth history,2005:645-708
|
CSCD被引
1
次
|
|
|
|
8.
Stahl W J. Compositional changes and ~(13)C/~(12)C fractionations during the degradation of hydrocarbons by bacteria.
Geochim Cosmochim Acta,1980,44(11):1903-1907
|
CSCD被引
13
次
|
|
|
|
9.
Palmer S E. Effects of biodegradation and water washing on crude oil composition.
Org Geochem,1993,11(1):511-533
|
CSCD被引
1
次
|
|
|
|
10.
Watson J S. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes.
Org Geochem,2002,33(10):1153-1169
|
CSCD被引
13
次
|
|
|
|
11.
Aitken C M. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs.
Nature,2004,431(7006):291-294
|
CSCD被引
30
次
|
|
|
|
12.
Grossi V. Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary.
Org Geochem,2008,39(8):1197-1203
|
CSCD被引
5
次
|
|
|
|
13.
陈传平. 砂岩储层中原油微生物降解的模拟实验研究.
沉积学报,1997,15(1):135-140
|
CSCD被引
23
次
|
|
|
|
14.
张渠. 原油模拟生物降解的饱和烃色谱分析.
石油实验地质,2005,27(1):81-84
|
CSCD被引
13
次
|
|
|
|
15.
包建平. 原油生物降解模拟实验.
石油勘探与开发,2007,34(1):43-47
|
CSCD被引
11
次
|
|
|
|
16.
向廷生. 原油生物降解模拟实验及其定量化评价.
现代地质,2010,24(2):259-267
|
CSCD被引
5
次
|
|
|
|
17.
Townsend G T. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer.
Environ Sci Technol,2003,37(22):5213-5218
|
CSCD被引
11
次
|
|
|
|
18.
da-Cruz G F. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?.
AMB Express,2011,1:47
|
CSCD被引
1
次
|
|
|
|
19.
Huang Y. Absence of carbon isotope fractionation of individual n-alkanes in a 23-year field decomposition experiment with Calluna vulgaris.
Org Geochem,1997,26(7/8):497-501
|
CSCD被引
3
次
|
|
|
|
20.
Masterson W D. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska.
Org Geochem,2001,32(3):411-441
|
CSCD被引
25
次
|
|
|
|
|