Formation of intermetallic compounds of Cu/Al multilayer foils during cold rolling
查看参考文献32篇
文摘
|
In metallurgical theory, the generation of new phases requires high temperature diffusion over a long period of time. Here, we report an experimental study of the generation of new phases using large mechanical deformations and high pressure, rather than heat. A 4.83-mm-thick 23-layered Cu/Al sandwich strip was formed by cold rolling. When the Cu/Al sandwich was further rolled to a 0.13-mm- thick foil on a four-high micro-foil mini mill at room temperature, some rectangular-shaped phases appeared at the Cu/Al interfaces. The scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses reveal that the phases are a mixture of Al_2Cu/ AlCu/Al_4Cu_9, which indicates that chemical reactions occur at the Cu/Al interfaces during cold deformation. This study provides new insights into the design and development of composite materials for various applications. |
其他语种文摘
|
金属学理论认为新相的形成需要高温且长时间. 然而, 本研究发现, 在没有热作用的前提下, 大的机械变形和大的压力也可以使一些新相产生. 实验中首先采用冷轧方法制备出4.83 mm厚的三明治Cu/Al复合带(23层), 然后在四辊微成型轧机上(3M轧机)进行冷轧. 当Cu/Al复合带被轧到厚度为0.13 mm时, 发现在Cu/Al界面处有矩形状的相出现. 采用SEM、TEM和XRD分析得出, 这些相是由三种不同的金属间化合物Al_2Cu/AlCu/Al_4Cu_9所组成, 这表明冷变形过程中Cu/Al界面之间发生了化学反应. 这一发现为设计和研制具有特殊性能的复合材料提供了新思路. |
来源
|
Science China. Materials
,2015,58(7):574-583 【核心库】
|
DOI
|
10.1007/s40843-015-0070-1
|
关键词
|
metallurgical theory
;
temperature
;
diffusion
|
地址
|
1.
Research Institute of Science and Technology, Northeastern University, Shenyang, 110189
2.
Mechanical and Electronic Engineering College, Xuzhou Institute of Technology, Xuzhou, 221008
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-8226 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
江苏省自然科学基金
;
江苏省六大人才高峰计划资助
;
the Project of Science and Technology Plan of Ministry of Housing and Urban-Rural Development of China
|
文献收藏号
|
CSCD:5549612
|
参考文献 共
32
共2页
|
1.
Fang T H. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper.
Science,2011,331:1857-1859
|
CSCD被引
184
次
|
|
|
|
2.
Lu K. The future of metals.
Science,2010,328:319-320
|
CSCD被引
109
次
|
|
|
|
3.
Mirab S. On the flow and mechanical behavior of Al matrix composite reinforced by nickel based (90% Ni-10% Cr) wires during equal channel angular pressing.
Mater Sci Eng A,2013,583:43-51
|
CSCD被引
3
次
|
|
|
|
4.
Jin Y G. Continuous high strength aluminum bolt manufacturing by the spring-loaded ECAP system.
J Mater Process Technol,2012,212:848-855
|
CSCD被引
5
次
|
|
|
|
5.
Wang L. Microstructure and texture evolution in ultrafine-grained pure Ti processed by equal-channel angular pressing with subsequent dynamic compression.
Scr Mater,2014,77:33-36
|
CSCD被引
4
次
|
|
|
|
6.
Bachmaier A. The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion.
Acta Mater,2012,60:860-871
|
CSCD被引
9
次
|
|
|
|
7.
Loucif A. Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion.
Mater Sci Eng A,2010,527:4864-4869
|
CSCD被引
4
次
|
|
|
|
8.
Pirgazi H. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding.
Mater Sci Eng A,2008,497:132-138
|
CSCD被引
19
次
|
|
|
|
9.
Rezaei M R. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy.
J Mater Process Technol,2011,211:1184-1190
|
CSCD被引
17
次
|
|
|
|
10.
Gao X H. Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling.
Mater Sci Eng A,2006,430:138-141
|
CSCD被引
15
次
|
|
|
|
11.
Lu A Q. Effect of cross shear rolling on microstructure and properties of surface nanocrystallized 316l stainless steel.
Acta Metallurgica Sinica (in Chinese),2005,41:3-8
|
CSCD被引
1
次
|
|
|
|
12.
Yu H L. Asymmetric cryorolling for fabrication of nanostructural aluminum sheets.
Sci Rep,2012,2:772
|
CSCD被引
9
次
|
|
|
|
13.
Lu L. Superplastic extensibility of nanocrystalline copper at room temperature.
Science,2000,287:1463-1466
|
CSCD被引
116
次
|
|
|
|
14.
Liu X C. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel.
Science,2013,342:337-340
|
CSCD被引
82
次
|
|
|
|
15.
Liu G. Formation of nanocrystallines in the surface layer of commercial pure titanium thin sheet during asymmetric rolling.
Acta Metallurgica Sinica (in Chinese),2013,49:599-604
|
CSCD被引
1
次
|
|
|
|
16.
Wu K. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB).
Mater Sci Eng A,2010,527:3073-3078
|
CSCD被引
52
次
|
|
|
|
17.
Chang H. Texture evolution of the Mg/ Al laminated composite fabricated by the accumulative roll bonding.
Scr Mater,2009,61:717-720
|
CSCD被引
17
次
|
|
|
|
18.
Chang H. Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature.
Mater Sci Eng A,2012,543:249-256
|
CSCD被引
24
次
|
|
|
|
19.
Chang H. Texture Evolution of the Mg/Al Laminated Composite by Accumulative Roll Bonding at Ambient Temperature.
Rare Metal Mater Eng, in Chinese,2013,42:441-446
|
CSCD被引
7
次
|
|
|
|
20.
Nasiri Dehsorkhi R. Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process.
Mater Sci Eng A,2011,530:63-72
|
CSCD被引
15
次
|
|
|
|
|