帮助 关于我们

返回检索结果

激光诱导击穿光谱单变量及多元线性回归方法研究
Research on Univariate and Multiple Linear Regression Calibration Methods by Laser Induced Breakdown Spectroscopy

查看参考文献20篇

文摘 为了提高激光诱导击穿光谱技术的检测能力和准确性,分别采用单变量分析和多变量分析方法[多元线性回归(MLR)]对样品中Cr进行定量分析。分别利用CrI:425.435 nm和CrI:427.48 nm两条特征谱线进行单变量分析,并在5种不同激光能量下获得了Cr的检测限,结果表明谱线CrI:425.435 nm的分析结果要优于CrI:427.48 nm,获得Cr最佳的检测限为5.8 mg/g。利用多变量分析方法,研究了浓度预测值与浓度实际值之间的线性相关性,与单变量分析方法相比,线性相关性由0.98提高到了0.99以上;采用留一交叉验证方法,比较了两种方法的预测相对误差(REP),单变量分析方法的REP分别为6.73%和7.59%,而MLR分析方法的REP则为4.66%,结果表明激光诱导击穿光谱技术结合MLR能够提高样品浓度预测的准确性。
其他语种文摘 In order to improve the detection capability and accuracy of laser-induced breakdown spectroscopy (LIBS), the univariate and multivariate method [multiple linear regression (MLR)] are adopted to make quantitative analysis on Cr contained in samples respectively. Univariate analysis has been made by use of two characteristic spectral lines CrI:425.435 nm and CrI:427.48 nm, the limits of detection are obtained under the condition of five laser energies. The results indicate that the analytical results of CrI:425.435 nm are better than CrI:427.48 nm, the best limit of detection of Cr is achieved 5.8 mg/g. The linear correlation between the prediction and actual values of concentration of samples is discussed using MLR, the correlation coefficient is increasing to above 0.99 from 0.98 compared with univariate method. Using the approach of leave-one-cross-validation, the relative errors of prediction (REP) of univariate analysis of CrI:425.435 nm and CrI:427.48 nm are 6.73% and 7.59% respectively, while the REP of MLR is reduced to 4.66%. The results indicate that LIBS combined with MLR can improve the accuracy of prediction on concentration of samples.
来源 激光与光电子学进展 ,2015,52(9):093001-1-093001-6 【核心库】
DOI 10.3788/LOP52.093001
关键词 光谱学 ; 激光诱导击穿光谱 ; 重金属 ; ; 单变量校正 ; 多元线性回归
地址

中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031

语种 中文
文献类型 研究性论文
ISSN 1006-4125
学科 物理学
基金 国家自然科学基金 ;  国家863计划 ;  安徽省杰出青年科学基金 ;  中国科学院仪器设备功能开发技术创新项目
文献收藏号 CSCD:5548623

参考文献 共 20 共1页

1.  Cremers D A. Handbook of Laser Induced Breakdown Spectroscopy,2006:1-15 CSCD被引 2    
2.  Eppler A S. Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Applied Spectroscopy,1996,50(9):1175-1181 CSCD被引 27    
3.  孟德硕. 土壤钾元素的激光诱导击穿光谱定量检测分析. 中国激光,2014,41(5):0515003 CSCD被引 9    
4.  Rai N K. LIBS-an efficient approach for the determination of Cr in industrial wastewater. Journal of Hazardous Materials,2008,150(3):835-838 CSCD被引 36    
5.  胡丽. 水体重金属多元素LIBS测量连续背景光谱去除方法研究. 中国激光,2014,41(7):0715003 CSCD被引 9    
6.  Lazzari C. Detection of mercury in air by time resolved laser- induced breakdown spectroscopy technique. Laser Part,1994,12(3):525-530 CSCD被引 6    
7.  Hybl J D. Laser-induced breakdown spectroscopy detection and classification of biological aerosols. Applied Spectroscopy,2003,57(10):1207-1215 CSCD被引 11    
8.  Rosenwasser S. Development of a method for automated quantitative analysis of ores using LIBS. Spectrochimica Acta Part B,2001,56(4):707-714 CSCD被引 18    
9.  陈兴龙. 激光诱导击穿光谱在地质录井岩性快速识别中的应用. 中国激光,2013,40(12):1215001 CSCD被引 20    
10.  Demetrios A. Laser induced breakdown spectroscopy in art and archaeology. Applied Spectroscopy,2001,55(6):186A-205A CSCD被引 14    
11.  尚丽平. 激光诱导击穿光谱内标参量选取方法研究. 激光与光电子学进展,2014,51(10):103003 CSCD被引 2    
12.  胡振华. 液体射流双脉冲激光诱导击穿Ca等离子体温度和电子数密度研究. 光学学报,2013,33(4):0430004 CSCD被引 10    
13.  Kraushaar M. Slag analysis with laser-induced breakdown spectrometry. Applied Spectroscopy,2003,57(10):1282-1287 CSCD被引 15    
14.  Whitehouse A I. Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2001,56(6):821-830 CSCD被引 15    
15.  Knight A K. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Applied Spectroscopy,2000,54(3):331-340 CSCD被引 35    
16.  Stipe C B. Laser-induced breakdown spectroscopy of steel: A comparison of univariate and multivariate calibration methods. Applied Spectroscopy,2010,64(2):154-160 CSCD被引 7    
17.  Wang Zhe. A non- linearized PLS model based on multivariate dominant factor for laserinduced breakdown spectroscopy measurements. J Anal At Spectrom,2011,26(11):2175-2182 CSCD被引 46    
18.  Laville S. Multi- elemental analysis of solidified mineral melt samples by laser- induced breakdown spectroscopy coupled with a linear multivariate calibration. Spectrochimica Acta Part B,2007,62(12):1557-1566 CSCD被引 24    
19.  Yaroshchyk P. Comparison of principal components regression, partial least squares regression, multi- block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS. J Anal At Spectrom,2012,27(1):92-98 CSCD被引 11    
20.  穆畅道. 利用铬革渣研制皮革复鞣剂和涂饰剂,2001:1-15 CSCD被引 1    
引证文献 4

1 杨晖 双光束激光诱导击穿光谱提高污染大米中镉元素检测灵敏度实验 激光与光电子学进展,2016,53(5):053005_01-053005_07
CSCD被引 0 次

2 潘立剑 基于激光诱导击穿光谱与径向基函数神经网络的铝合金定量分析 激光与光电子学进展,2020,57(19):193002
CSCD被引 4

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号