激光诱导击穿光谱单变量及多元线性回归方法研究
Research on Univariate and Multiple Linear Regression Calibration Methods by Laser Induced Breakdown Spectroscopy
查看参考文献20篇
文摘
|
为了提高激光诱导击穿光谱技术的检测能力和准确性,分别采用单变量分析和多变量分析方法[多元线性回归(MLR)]对样品中Cr进行定量分析。分别利用CrI:425.435 nm和CrI:427.48 nm两条特征谱线进行单变量分析,并在5种不同激光能量下获得了Cr的检测限,结果表明谱线CrI:425.435 nm的分析结果要优于CrI:427.48 nm,获得Cr最佳的检测限为5.8 mg/g。利用多变量分析方法,研究了浓度预测值与浓度实际值之间的线性相关性,与单变量分析方法相比,线性相关性由0.98提高到了0.99以上;采用留一交叉验证方法,比较了两种方法的预测相对误差(REP),单变量分析方法的REP分别为6.73%和7.59%,而MLR分析方法的REP则为4.66%,结果表明激光诱导击穿光谱技术结合MLR能够提高样品浓度预测的准确性。 |
其他语种文摘
|
In order to improve the detection capability and accuracy of laser-induced breakdown spectroscopy (LIBS), the univariate and multivariate method [multiple linear regression (MLR)] are adopted to make quantitative analysis on Cr contained in samples respectively. Univariate analysis has been made by use of two characteristic spectral lines CrI:425.435 nm and CrI:427.48 nm, the limits of detection are obtained under the condition of five laser energies. The results indicate that the analytical results of CrI:425.435 nm are better than CrI:427.48 nm, the best limit of detection of Cr is achieved 5.8 mg/g. The linear correlation between the prediction and actual values of concentration of samples is discussed using MLR, the correlation coefficient is increasing to above 0.99 from 0.98 compared with univariate method. Using the approach of leave-one-cross-validation, the relative errors of prediction (REP) of univariate analysis of CrI:425.435 nm and CrI:427.48 nm are 6.73% and 7.59% respectively, while the REP of MLR is reduced to 4.66%. The results indicate that LIBS combined with MLR can improve the accuracy of prediction on concentration of samples. |
来源
|
激光与光电子学进展
,2015,52(9):093001-1-093001-6 【核心库】
|
DOI
|
10.3788/LOP52.093001
|
关键词
|
光谱学
;
激光诱导击穿光谱
;
重金属
;
铬
;
单变量校正
;
多元线性回归
|
地址
|
中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-4125 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
国家863计划
;
安徽省杰出青年科学基金
;
中国科学院仪器设备功能开发技术创新项目
|
文献收藏号
|
CSCD:5548623
|
参考文献 共
20
共1页
|
1.
Cremers D A.
Handbook of Laser Induced Breakdown Spectroscopy,2006:1-15
|
CSCD被引
2
次
|
|
|
|
2.
Eppler A S. Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy.
Applied Spectroscopy,1996,50(9):1175-1181
|
CSCD被引
27
次
|
|
|
|
3.
孟德硕. 土壤钾元素的激光诱导击穿光谱定量检测分析.
中国激光,2014,41(5):0515003
|
CSCD被引
9
次
|
|
|
|
4.
Rai N K. LIBS-an efficient approach for the determination of Cr in industrial wastewater.
Journal of Hazardous Materials,2008,150(3):835-838
|
CSCD被引
36
次
|
|
|
|
5.
胡丽. 水体重金属多元素LIBS测量连续背景光谱去除方法研究.
中国激光,2014,41(7):0715003
|
CSCD被引
9
次
|
|
|
|
6.
Lazzari C. Detection of mercury in air by time resolved laser- induced breakdown spectroscopy technique.
Laser Part,1994,12(3):525-530
|
CSCD被引
6
次
|
|
|
|
7.
Hybl J D. Laser-induced breakdown spectroscopy detection and classification of biological aerosols.
Applied Spectroscopy,2003,57(10):1207-1215
|
CSCD被引
11
次
|
|
|
|
8.
Rosenwasser S. Development of a method for automated quantitative analysis of ores using LIBS.
Spectrochimica Acta Part B,2001,56(4):707-714
|
CSCD被引
18
次
|
|
|
|
9.
陈兴龙. 激光诱导击穿光谱在地质录井岩性快速识别中的应用.
中国激光,2013,40(12):1215001
|
CSCD被引
20
次
|
|
|
|
10.
Demetrios A. Laser induced breakdown spectroscopy in art and archaeology.
Applied Spectroscopy,2001,55(6):186A-205A
|
CSCD被引
14
次
|
|
|
|
11.
尚丽平. 激光诱导击穿光谱内标参量选取方法研究.
激光与光电子学进展,2014,51(10):103003
|
CSCD被引
2
次
|
|
|
|
12.
胡振华. 液体射流双脉冲激光诱导击穿Ca等离子体温度和电子数密度研究.
光学学报,2013,33(4):0430004
|
CSCD被引
10
次
|
|
|
|
13.
Kraushaar M. Slag analysis with laser-induced breakdown spectrometry.
Applied Spectroscopy,2003,57(10):1282-1287
|
CSCD被引
15
次
|
|
|
|
14.
Whitehouse A I. Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy.
Spectrochimica Acta Part B,2001,56(6):821-830
|
CSCD被引
15
次
|
|
|
|
15.
Knight A K. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration.
Applied Spectroscopy,2000,54(3):331-340
|
CSCD被引
35
次
|
|
|
|
16.
Stipe C B. Laser-induced breakdown spectroscopy of steel: A comparison of univariate and multivariate calibration methods.
Applied Spectroscopy,2010,64(2):154-160
|
CSCD被引
7
次
|
|
|
|
17.
Wang Zhe. A non- linearized PLS model based on multivariate dominant factor for laserinduced breakdown spectroscopy measurements.
J Anal At Spectrom,2011,26(11):2175-2182
|
CSCD被引
46
次
|
|
|
|
18.
Laville S. Multi- elemental analysis of solidified mineral melt samples by laser- induced breakdown spectroscopy coupled with a linear multivariate calibration.
Spectrochimica Acta Part B,2007,62(12):1557-1566
|
CSCD被引
24
次
|
|
|
|
19.
Yaroshchyk P. Comparison of principal components regression, partial least squares regression, multi- block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS.
J Anal At Spectrom,2012,27(1):92-98
|
CSCD被引
11
次
|
|
|
|
20.
穆畅道.
利用铬革渣研制皮革复鞣剂和涂饰剂,2001:1-15
|
CSCD被引
1
次
|
|
|
|
|