微流控器件中的多相流动
Multiphase flow in microfluidic devices
查看参考文献240篇
文摘
|
微流控技术及微流控器件是近年来发展迅速的多学科交叉研究领域. 相比于传统方法,微流控技术能够实现对微量多相流体的精准操控,可应用于化学分析、先进材料合成、蛋白质结晶、单细胞培育及检测、信息处理等领域.该文回顾微流控器件中的多相流动现象,概述其所涉及的流体力学机理,阐述实现多相微流控的各种方法,并分析多相微流控技术的应用现状及面临的挑战,最后总结针对多相微流动问题的数值模拟方法和实验测量技术,展望多相微流控器件的研究方向及应用前景. |
其他语种文摘
|
Recent years have witnessed the rapid development of microfluidic technology and microfluidic devices as a multi-disciplinary research field. Compared to conventional methods, microfluidic technology enables us to precisely manipulate the small volume of multiphase fluids for chemical analysis, advanced materials synthesis, protein crystallization, single-cell cultivation and detection, information processing, etc. In this paper, we review the multiphase flow phenomena in microfluidic devices, summarize the fluid mechanics involved, describe various methods to achieve multiphase microfluidic flow, and analyze the state-of-the-art of applications and challenges in this field. Finally, numerical simulation methods and experimental measurement techniques for multiphase microflows are provided. Opportunities for future research and application of microfluidic devices are suggested. |
来源
|
力学进展
,2015,45(1):55-110 【核心库】
|
DOI
|
10.6052/1000-0992-14-063
|
关键词
|
微尺度流动
;
多相流动
;
液滴
;
微流控器件
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0992 |
学科
|
力学 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:5530786
|
参考文献 共
240
共12页
|
1.
胡国庆. 第一届Batchelor奖获得者Howard Stone教授研究工作简评.
力学进展,2008,38:623-624
|
CSCD被引
1
次
|
|
|
|
2.
李战华.
微流控芯片中的流体流动,2012
|
CSCD被引
34
次
|
|
|
|
3.
林炳承.
微纳流控芯片实验室,2013
|
CSCD被引
13
次
|
|
|
|
4.
司廷. 流动聚焦研究进展及其应用.
科学通报,2011,56:537-546
|
CSCD被引
8
次
|
|
|
|
5.
王企鲲. 管流中颗粒“惯性聚集”现象的研究进展及其在微流动中的应用.
力学进展,2012,42:692-703
|
CSCD被引
9
次
|
|
|
|
6.
Abate A. Impact of inlet channel geometry on microfluidic drop formation.
Physical Review E,2009,80:026310
|
CSCD被引
2
次
|
|
|
|
7.
Abate A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics.
Small,2009,5:2030-2032
|
CSCD被引
14
次
|
|
|
|
8.
Abate A. Experimental validation of plugging during drop formation in a T-junction.
Lab on a Chip,2012,12:1516-1521
|
CSCD被引
6
次
|
|
|
|
9.
Abate A R. Beating Poisson encapsulation statistics using close-packed ordering.
Lab on a Chip,2009,9:2628-2631
|
CSCD被引
3
次
|
|
|
|
10.
Abate A R. High-throughput injection with microfluidics using picoinjectors.
Proceedings of the National Academy of Sciences,2010,107:19163-19166
|
CSCD被引
12
次
|
|
|
|
11.
Abate A R. Patterning microfluidic device wettability using flow confinement.
Lab on a Chip,2010,10:1774-1776
|
CSCD被引
1
次
|
|
|
|
12.
Abate A R. Faster multiple emulsification with drop splitting.
Lab on a Chip,2011,11:1911-1915
|
CSCD被引
14
次
|
|
|
|
13.
Adams L. Single step emulsification for the generation of multi-component double emulsions.
Soft Matter,2012,8:10719-10724
|
CSCD被引
9
次
|
|
|
|
14.
Adham A M. Thermal and hydrodynamic analysis of microchannel heat sinks: A review.
Renewable & Sustainable Energy Reviews,2013,21:614-622
|
CSCD被引
10
次
|
|
|
|
15.
Adrian R J. Particle-imaging techniques for experimental fluid mechanics.
Annual Review of Fluid Mechanics,1991,23:261-304
|
CSCD被引
127
次
|
|
|
|
16.
Afkhami S. Numerical investigation of elongated drops in a microfluidic T-junction.
Physics of Fluids,2011,23:022002
|
CSCD被引
6
次
|
|
|
|
17.
Ahn K. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels.
Applied Physics Letters,2006,88:264105
|
CSCD被引
4
次
|
|
|
|
18.
Ahn K. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices.
Applied Physics Letters,2006,88:024104-024103
|
CSCD被引
10
次
|
|
|
|
19.
Aidun C K. Lattice-Boltzmann method for complex flows.
Annual Review of Fluid Mechanics,2010,42:439-472
|
CSCD被引
90
次
|
|
|
|
20.
Amirouche F. Current micropump technologies and their biomedical applications.
Microsystem Technologies,2009,15:647-666
|
CSCD被引
10
次
|
|
|
|
|