热解材料对生物炭理化性质的影响
Effects of Different Feedstocks on Physicochemical Characteristics of Pyrolyzed Biochars
查看参考文献43篇
文摘
|
生物质的热解材料会对其生物炭的物理化学性质产生较大影响,进而影响其田间应用效果。选取四种乔木(橡树、桑树、樟树和松树)、三种草本植物(芦苇、蒿和蕨类)和两种作物秸秆(玉米秆和油菜秆),在同等热解条件下(550 ℃)制备生物炭,对比其理化性质的差异。结果显示,秸秆生物炭的可溶性Cl-和K+含量、EC 和CEC 均显著高于乔木和草本生物炭,有效磷也呈现类似规律,而可溶性Na~+、Ca~(2+)和Mg~(2+)含量以及pH、SO_4~(2-)、NH_4~+-N、NO_3~--N 等指标在三类生物炭之间无显著差异。乔木生物炭和草本生物炭之间在各个指标上均无显著差异。这表明,从营养元素、CEC 和改良酸性土壤的角度来看,秸秆生物炭比乔木和草本生物炭更适合作为土壤改良剂。 |
其他语种文摘
|
Feedstock characteristics strongly influence the physicochemical characteristics of pyrolyzed biochars, thus affecting the effects of biochars. In this research, the physicochemical characteristics of biochars pyrolyzed under the same pyrolysis condition(550 ℃)from nine feedstocks(four arbors:oak, mulberry, camphor tree and pine tree; three shrubs:phragmites, artemisia and fern; two crop straws:rape stalks and corn stalks) were examined. Soluble Cl~-and K~+ , available phosphorus, EC, and CEC were generally higher in the straw -derived biochars than in the arbor-and shrub-derived biochars. However, there was no significant difference in soluble Na~+, Ca~(2+), Mg~(2+) and SO_4~(2-) ,pH, NH+4 -N and NO-3 -N among the three categories of biochars. From the perspective of the improvements of soil nutrients, CEC, and acidity, straw biochar is preferable over arbor and shrub biochars. |
来源
|
农业环境科学学报
,2015,34(9):1822-1828 【核心库】
|
DOI
|
10.11654/jaes.2015.09.027
|
关键词
|
生物炭
;
热解材料
;
物理化学性质
;
土壤改良
|
地址
|
1.
四川省地矿局成都水文地质工程地质队, 环境地球化学国家重点实验室, 成都, 610072
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
3.
中国冶金地质总局昆明地质勘查院, 昆明, 650203
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-2043 |
学科
|
行业污染、废物处理与综合利用 |
基金
|
中国科学院战略性先导科技专项
;
贵州省农业科技攻关项目
;
中科院院地合作和科技支疆项目
;
国家重大科学研究计划
;
贵州省国际合作项目
;
中国科学院西部之光人才培养计划
|
文献收藏号
|
CSCD:5529994
|
参考文献 共
43
共3页
|
1.
王久臣. 中国生物质能产业发展现状及趋势分析.
农业工程学报,2007,23(9):276-282
|
CSCD被引
107
次
|
|
|
|
2.
曹国良. 中国区域农田秸秆露天焚烧排放量的估算.
科学通报,2007,52(15):1826-1831
|
CSCD被引
81
次
|
|
|
|
3.
陈温福. 生物炭应用技术研究.
中国工程科学,2011,13(2):83-89
|
CSCD被引
123
次
|
|
|
|
4.
Glaser B. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:A review.
Biology and Fertility of Soils,2002,35(4):219-230
|
CSCD被引
340
次
|
|
|
|
5.
Lehmann J. Bio-char sequestration in terrestrial ecosystems: A review.
Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427
|
CSCD被引
383
次
|
|
|
|
6.
Ameloot N. Short-term CO_2 and N_2O emissions and microbial properties of biochar amended sandy loam soils.
Soil Biology & Biochemistry,2013,57:401-410
|
CSCD被引
55
次
|
|
|
|
7.
Wang J Y. Effects of biochar addition on N_2O and CO_2 emissions from two paddy soils.
Biology and Fertility of Soils,2011,47(8):887-896
|
CSCD被引
38
次
|
|
|
|
8.
Nelissen V. Maize biochars accelerate shorttermsoil nitrogen dynamics in a loamysand soil.
Soil Biology&Biochemistry,2012,55:20-27
|
CSCD被引
59
次
|
|
|
|
9.
Biederman L A. Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis.
Global Change Biology Bioenergy,2013,5(2):202-214
|
CSCD被引
104
次
|
|
|
|
10.
Blackwell P. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia:An agronomic and economic perspective.
Australian Journal of Soil Research,2010,48(6/7):531-545
|
CSCD被引
24
次
|
|
|
|
11.
Chen Y. Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality.
Australian Journal of Soil Research,2010,48(6/7):526-530
|
CSCD被引
49
次
|
|
|
|
12.
Laird D. Biochar impact on nutrient leaching from a Midwestern agricultural soil.
Geoderma,2010,158(3/4):436-442
|
CSCD被引
179
次
|
|
|
|
13.
Lehmann J. Bio-char sequestration in terrestrial ecosystems:A review.
Mitigation and Adaptation Strategies for Global Change,2006,11(2):395-419
|
CSCD被引
383
次
|
|
|
|
14.
Lehmann J. Biochar effects on soil biota:A review.
Soil Biology & Biochemistry,2011,43(9):1812-1836
|
CSCD被引
460
次
|
|
|
|
15.
杨放. 生物炭对盐碱土氮淋溶的影响.
农业环境科学学报,2014,33(5):972-977
|
CSCD被引
25
次
|
|
|
|
16.
Mukome F N D. The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil.
Geoderma,2013,200:90-98
|
CSCD被引
9
次
|
|
|
|
17.
Knoblauch C. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils.
Soil Biology & Biochemistry,2011,43(9):1768-1778
|
CSCD被引
56
次
|
|
|
|
18.
Zhang L. Diurnal dynamics of CH_4, CO_2 and N_2O fluxes in the saline-alkaline soils of the Yellow River Delta, China.
Plant Biosystems: An International Journal Dealing with all Aspects of Plant Biology. (ahead-of-print),2014(ahead-of-print):1-9
|
CSCD被引
1
次
|
|
|
|
19.
Prendergast-Miller M T. Localisation of nitrate in the rhizosphere of biochar-amended soils.
Soil Biology&Biochemistry,2011,43(11):2243-2246
|
CSCD被引
15
次
|
|
|
|
20.
Major J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol.
Plant and Soil,2010,333(1):117-128
|
CSCD被引
195
次
|
|
|
|
|