基于共线DP-LIBS检测环境中核素铯的研究
Investigation Nuclide Cs of Environment Based on Collinear Double Pulses Laser-Induced Breakdown Spectroscopy
查看参考文献20篇
文摘
|
铯是核事故放射性粉尘中主要危害的核元素之一,建立对铯等核素的快速有效的检测监测是核事故应急的重要研究方向。建立了一种基于共线双脉冲激光诱导击穿光谱(DP-LIBS)技术的核素铯检测方法。对采集延时优化实验发现采集延时为2.0 ms,光谱信号最强。两激光脉冲间隔时间为3.8 ms时,信号最好。通过对叶片样品压片进行定量分析,采用CsI: 894.3 nm为分析线,拟合曲线的拟合系数R~2为0.91。进一步利用DP-LIBS对不同浓度Cscl处理的红叶石楠叶片进行直接分析,结果显示:不同浓度Cscl处理的叶片在CsI: 894.3 nm处有明显发射谱线的,建立定标曲线的拟合系数为0.73;证明LIBS技术可以实现对环境样品核素铯含量的快速检测的可行性。 |
其他语种文摘
|
In nuclear accident radioactive dust, Cesium is one of the main nuclear. So establishing fast and effective detection of the cesium and other elements is an important research direction of nuclear accident emergency. This study establishes a collinear double pulses laser induced breakdown spectroscopy (DP-LIBS) technology of nuclide cesium detection method. Optimization experiment of gate delay time finds that the signal spectrum reach maximum enhancement, when the gate delay time is 2.0 ms. When the delay time between two lasers is 3.8 ms, the signal spectrum is best. Through the quantitative analysis of the leaf sample tablet, when the analysis line is CsI: 894.3 nm, fitting coefficient R~2 of fitting curve is 0.91. Further using DP-LIBS to analysis Photiniaxfraseri leaf which is dealt with different concentrations of Cscl, and the result shows that: leaf which is dealt with different concentrations of Cscl has obvious spectrum in CsI: 894.3 nm, fitting coefficient of fitting curve is 0.73. The feasibility are proved that LIBS technology can achieve rapid detection of radionuclide cesium content in environment. |
来源
|
激光与光电子学进展
,2015,52(8):083001-1-083001-7 【核心库】
|
DOI
|
10.3788/LOP52.083001
|
关键词
|
光谱学
;
共线双脉冲激光诱导击穿光谱
;
两激光脉冲间隔
;
定量分析
;
铯检测
|
地址
|
1.
中国科学院合肥物质科学研究院技术生物与农业工程研究所, 中国科学院离子束生物工程重点实验室, 安徽, 合肥, 230031
2.
中国科学院核能技术安全研究所, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-4125 |
学科
|
化学 |
基金
|
中国科学院战略性先导科技专项
;
中国科学院合肥物质科学研究院院长基金
;
安徽省国防科工办核应急项目
|
文献收藏号
|
CSCD:5524360
|
参考文献 共
20
共1页
|
1.
韩桂军. 日本福岛核污染对中国和美国近海影响的集合统计预测.
中国科学:地球科学,2013,43(57):831-835
|
CSCD被引
1
次
|
|
|
|
2.
乔方利. 2011年3月日本福岛核泄漏物质输运扩散路径的情景模拟和预测.
科学通报,2011,56(12):887-894
|
CSCD被引
15
次
|
|
|
|
3.
Unterweger M P. Half-life measurements at the national institute of standards and technology.
Applied Radiation and Istopes,2002,56(1/2):125-130
|
CSCD被引
2
次
|
|
|
|
4.
刘军. 基于β射线吸收法的可吸入颗粒物检测仪.
仪表技术与传感器,2011(9):39-41
|
CSCD被引
1
次
|
|
|
|
5.
Ferreira Edilene C. Determination of Ca in breakfast cereals by laser induced breakdown spectroscopy.
Food Control,2010,21(10):1327-1330
|
CSCD被引
9
次
|
|
|
|
6.
Lidiane Cristina Nunes. Simultaneous optimization by neurogenetic approach for analysis of plant materials by laser induced breakdown spectroscopy.
Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(6):565-572
|
CSCD被引
7
次
|
|
|
|
7.
Hubmer G. Application of LIBS to the in-line process control of liquid high-alloy steel under pressure.
Ana Bioanal Chem,2006,385(2):219-224
|
CSCD被引
20
次
|
|
|
|
8.
Gruber J. In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy.
Applied Spectroscopy,2004,58(4):457-462
|
CSCD被引
18
次
|
|
|
|
9.
董美蓉. 液相和固相钢铁的激光诱导击穿光谱特性.
光学学报,2011,31(1):0130002
|
CSCD被引
23
次
|
|
|
|
10.
Gruber J. Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy.
Spectrochimica Acta Part B: Atomic Spectroscopy,2001,56(6):685-693
|
CSCD被引
37
次
|
|
|
|
11.
Capitelli F. Determination of heavy metals in s oils by laser-induced breakdown spectroscopy.
Geoderma,2002,106(1):45-62
|
CSCD被引
41
次
|
|
|
|
12.
Fichet P. Comparisons between LIBS and ICP/OES.
Anal Bioanal Chem,2006,385(2):338-344
|
CSCD被引
12
次
|
|
|
|
13.
Multari Rosalie A. Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy.
Applied Spectroscopy,1996,50(12):1483-1499
|
CSCD被引
27
次
|
|
|
|
14.
Lanza Nina L. Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars.
Appl Opt,2010,49(13):C211-C217
|
CSCD被引
21
次
|
|
|
|
15.
Martina M Z. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications.
Spectrochimica Acta Part B: Atomic Spectroscopy,2011,74(75):177-183
|
CSCD被引
1
次
|
|
|
|
16.
Tampo M. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling.
J Anal At Spectrom,2014,29(5):886-892
|
CSCD被引
6
次
|
|
|
|
17.
Hai R. Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak.
Spectrochimica Acta B: Atomic Spectroscopy,2013,87:147-152
|
CSCD被引
21
次
|
|
|
|
18.
Hai R. Characterization of Li deposition on the firstwall of EAST using laser-induced breakdown spectroscopy.
J Nucl Mater,2013,438(s):S1168-S1171
|
CSCD被引
9
次
|
|
|
|
19.
Xiao Q. Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices.
Fusion Eng Des,2013,88(9/10):1813-1817
|
CSCD被引
7
次
|
|
|
|
20.
中华人民共和国国家质量监督检验检疫总局.
锂矿石、铷矿石、铯矿石化学分析方法.GB/T 17413.3-2010,2011
|
CSCD被引
1
次
|
|
|
|
|