不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响
The interaction between Fe_3O_4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension
查看参考文献36篇
文摘
|
对3种不同来源腐殖酸Suwannee、Elliott Soil、Leonardite在纳米四氧化三铁表面的吸附行为进行了对比研究并评估了其对纳米四氧化三铁悬浮/沉降性能的影响.结果显示,3种腐殖酸Suwannee、Elliott Soil、Leonardite在Fe_3O_4NP表面的吸附都能迅速达到平衡,符合Langmuir和Freundlich吸附等温线模型,且吸附量随溶液PH的上升逐渐减弱;相同条件下含有更多羧基、脂肪族的腐殖酸Suwannee在Fe_3O_4 NP表面的吸附量更大,腐殖酸 Suwannee、Elliott Soil、Leonardite 在25℃、pH=7.0条件下最大吸附量分别为91.41、66.11、52.57 mg·g~(-1);悬浮/沉降实验表明Fe_3O_4 NP在水体中聚集程度与溶液的pH有关,溶液PH偏离Fe_3O_4等电点时,Fe_3O_4 NP表面电位越高,越不容易聚集而沉降;水体中广泛存在的溶解性有机质可使Fe_3O_4 NP在水中的悬浮性增强,尤其是靠近等电点时效果更明显,与腐殖酸对Fe_3O_4 NP空间位阻作用相关;通过对不同来源腐殖酸的结构和官能团进行分析发现,腐殖酸中含有的芳香性和羧酸结构对颗粒悬浮性的影响大于脂肪族结构,因此,腐殖酸Elliott Soil、Leonardite吸附到Fe_3O_4 NP表面后,Fe_3O_4 NP更容易在溶液中悬浮.因此,在富含腐殖酸的水体中,Fe_3O_4 NP可以悬浮并不易沉降,其对水生生态系统的影响不容忽视. |
其他语种文摘
|
Adsorption behaviors of humic acids from three different sources (Suwannee, Elliott Soil) and Leonardite on Fe_3O_4 nanoparticles (NPs) were comparatively studied and the influence on Fe_3O_4 NPs settleability was evaluated. The results revealed that, the humic acids adsorption on the Fe_3O_4 NPs reached equilibrium rapidly, which coincided with Langmuir and Freundlich adsorption isotherm models. The adsorption capacity gradually decreased with increasing solution pH.Under the same condition, the humic acid from Suwannee with more carboxyl and aliphatic functional groups was more easily adsorbed on Fe_3O_4 NPs surface. Under the condition of 25℃ and sulution pH=7.0, the maximum adsorption amount of humic acid from Suwannee,Elliott Soil and Leonardite on Fe_3O_4 NPs surface was 91.41,66.11,52.57 mg·g~(-1), respectively.The stability study showed that pH was an important factor accounting for the aggregations of Fe_3O_4 NPs. When the pH deviated from the isoelectric point of Fe_3O_4 NPs, higher surface potential resulted in less aggregated particles. Humic acid enhance the stability of Fe_3O_4 NPs in aqueous solutions, which might be related to the change of steric stabilization of Fe_3O_4 NPs. According to the research on structure and functional groups of humid acids with different sources, aromaticity and carboxylic acid could render Fe_3O_4 NPs higher stability than aliphatic structure, so the Fe_3O_4 NPs adsorbed with humic acids from Elliott Soil and Leonardite are more stable than the partable adsorpted with humic acid from Suwannee. Therefore, Fe_3O_4 NPs tend to suspend rather than settle down in aquatic system rich in humic acid, which brings in a which impact on aquatic ecosystems that should not be ignored. |
来源
|
环境化学
,2015,34(8):1520-1528 【核心库】
|
DOI
|
10.7524/j.issn.0254-6108.2015.08.2015013005
|
关键词
|
四氧化三铁
;
纳米颗粒
;
腐殖酸
;
吸附
;
悬浮/沉降性
;
官能团
|
地址
|
1.
中国科学院广州地球化学研究所, 环境基准与风险评估国家重点实验室, 广州, 510640
2.
中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京, 100012
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6108 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5494774
|
参考文献 共
36
共2页
|
1.
林道辉. 纳米材料的环境行为与生物毒性.
科学通报,2009,54(23):3590-3604
|
CSCD被引
44
次
|
|
|
|
2.
Auffan M. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichiacoli.
Environmental Science & Technology,2008,42(17):6730-6735
|
CSCD被引
32
次
|
|
|
|
3.
Jiang W. Bacterial toxicity comparison between nano-and micro-scaled oxide particles.
Environmental Pollution,2009,157(5):1619-1625
|
CSCD被引
36
次
|
|
|
|
4.
Li M H. Stability,bioavailability,and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media.
Environmental Science & Technology,2010,45(2):755-761
|
CSCD被引
1
次
|
|
|
|
5.
Wang N. Sono-assisted preparation of highly-efficient peroxidase-like Fe_30_4 magnetic nanoparticles for catalytic removal of organic pollutants with H202.
Ultrasonics Sonochemistry,2010,17(3):526-533
|
CSCD被引
43
次
|
|
|
|
6.
Saleh N. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface.
Nano Letters,2005,5(12):2489-2494
|
CSCD被引
14
次
|
|
|
|
7.
Yao X Z. Exploiting differential electrochemical stripping behaviors of Fe_3O_4 Nanocrystals toward Heavy metal ions by crystal cutting.
ACS Applied Materials & Interfaces,2014,6(15):12203-12213
|
CSCD被引
3
次
|
|
|
|
8.
Mayo J T. The effect of nanocrystalline magnetite size on arsenic removal.
Science and Technology of Advanced Materials,2007,8(1):71-75
|
CSCD被引
15
次
|
|
|
|
9.
Hu J. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles.
Water Research,2005,39(18):4528-4536
|
CSCD被引
54
次
|
|
|
|
10.
Chung T H. Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy.
ACS nano,2011,5(12):9807-9816
|
CSCD被引
2
次
|
|
|
|
11.
Ma P. Intraperitoneal injection of magnetic Fe_3O_4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice.
International Journal of Nanomedicine,2012,7:4809-4818
|
CSCD被引
7
次
|
|
|
|
12.
Liu J F. Coating Fe_30_4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water.
Environmental Science & Technology,2008,42(18):6949-6954
|
CSCD被引
75
次
|
|
|
|
13.
Zhu H. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants.
Environ Monit,2008,10(6):713-717
|
CSCD被引
1
次
|
|
|
|
14.
Hu J D. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
Science of the Total Environment,408(16):3477-3489
|
CSCD被引
21
次
|
|
|
|
15.
He Y T. Kinetic stability of hematite nanoparticles: the effect of particle sizes.
Journal of Nanoparticle Research,2008,10(2):321-332
|
CSCD被引
10
次
|
|
|
|
16.
吴丰昌.
天然有机质及其在环境中的作用机理,2010
|
CSCD被引
3
次
|
|
|
|
17.
Illes E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles.
Journal of Colloid and Interface Science,2006,295(1):115-123
|
CSCD被引
24
次
|
|
|
|
18.
Niu H Y. Humic acid coated Fe_30_4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole.
Journal of Hazardous Materials,2011,190(1):559-565
|
CSCD被引
26
次
|
|
|
|
19.
Lin D H. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions.
Carbon,2009,47(12):2875-2882
|
CSCD被引
12
次
|
|
|
|
20.
Hyung H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.
Environmental Science & Technology,2008,42(12):4416-4421
|
CSCD被引
39
次
|
|
|
|
|