常压干燥制备疏水性SiO_2~-玻璃纤维复合气凝胶及表征
Preparation and Characterization of Hydrophobic SiO_2~-glass Fibers Aerogels via Ambient Pressure Drying
查看参考文献21篇
文摘
|
以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为复合硅源,玻璃纤维为增强体,采用溶胶-凝胶和常压干燥工艺制备出疏水性SiO_2~-玻璃纤维复合气凝胶。利用N_2吸附脱附、扫描电镜、高分辨透射电镜、红外光谱、接触角、热重-差热分析及力学测试等手段表征复合气凝胶,并分析预处理玻璃纤维时的盐酸浓度及浸泡时间对复合气凝胶密度的影响。结果表明:当玻璃纤维的预处理条件为2.5mol/L盐酸浸泡0.5h时,制备得到的SiO_2~-玻璃纤维复合气凝胶表观密度最低,为0.12g/cm~3,孔径主要分布在2~50nm,疏水角为142°,热稳定性温度高达500℃,抗压强度为0.05MPa,弹性模量为0.5MPa。 |
其他语种文摘
|
Hydrophobic SiO_2~-glass fibers aerogels were prepared by sol-gel process with tetraethoxysiliane(TEOS) and methyltriethoxysilane (MTES) as the silica source,glass fibers as reinforcement, followed by ambient pressure drying.The physical properties and microstructure of silica aerogels were characterized by nitrogen adsorption/desorption tests,Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis,scanning electron microscopy,high resolution transmission electron microscopy,contact angle measurement and mechanical testing.The influences of acid concentration and soaking time during pretreatment of glass fibers on the densities of SiO_2~- glass fibers aerogels were investigated.The results show that when the pretreatment condition of glass fibers is soaking 0.5 hat 2.5 mol/L hydrochloric acid,the obtained monolithic SiO_2~ -glass fibers aerogels exhibit the lowest density of 0.12g·cm~(-3) and pore size is in the range of 2-50 nm,the water contact angle is 142°,the thermal stability temperature reaches 500℃,the compressive strength is 0.05 MPa,and the elastic modulus is 0.5 MPa. |
来源
|
材料工程
,2015,43(8):31-36 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2015.08.006
|
关键词
|
SiO_2气凝胶
;
玻璃纤维
;
常压干燥
|
地址
|
1.
厦门大学材料学院材料科学与工程系, 福建省特种先进材料重点实验室, 福建, 厦门, 361005
2.
厦门大学萨本栋微米纳米技术研究院, 福建, 厦门, 361005
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
物理学 |
基金
|
国家自然科学基金资助项目
;
厦门大学中央高校基本科研业务费专项基金
;
中国航空科学基金
;
福建省高等学校新世纪优秀人才支持计划资助项目(2013)
;
福建省自然科学基金
;
福建省厦门市科技计划项目
|
文献收藏号
|
CSCD:5491253
|
参考文献 共
21
共2页
|
1.
Husing N. Aerogels-airy materials:chemistry, structure,and properties.
Angewandte Chemie International Edition,1998,37(1/2):22-45
|
CSCD被引
96
次
|
|
|
|
2.
Soleiman D A. Silica aerogel;synthesis, properties and characterization.
Journal of Materials Processing Technology,2008,199(1/3):10-26
|
CSCD被引
123
次
|
|
|
|
3.
Fricke J. Aerogels-recent progress in production techniques and novel applications.
Journal of Sol-Gel Science and Technology,1998,13(1/3):299-303
|
CSCD被引
40
次
|
|
|
|
4.
Pajonk G M. Some applications of silica aerogels.
Colloid and Polymer Science,2003,281(7):637-651
|
CSCD被引
5
次
|
|
|
|
5.
Schmidt M. Applications for silica aerogel products.
Journal of Non-Crystalline Solids,1998,225:364-368
|
CSCD被引
54
次
|
|
|
|
6.
Kim C Y. Synthesis and pore analysis of aerogel- glass fiber composites by ambient drying method.
Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313:179-182
|
CSCD被引
23
次
|
|
|
|
7.
高庆福. 陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能.
硅酸盐学报,2009,37(1):40-44
|
CSCD被引
1
次
|
|
|
|
8.
Moner G M. Micromechanical properties of carbon-silica aerogel composites.
Applied Physics A,2002,74(1):119-122
|
CSCD被引
6
次
|
|
|
|
9.
张贺新. 碳纳米管掺杂SiO_2气凝胶隔热材料的制备与性能表征.
稀有金属材料与工程,2007,36(增刊1):567-569
|
CSCD被引
10
次
|
|
|
|
10.
Gupta N. Processing and compressive properties of aerogel/epoxy composites.
Journal of Materials Processing Technology,2008,198(1):178-182
|
CSCD被引
9
次
|
|
|
|
11.
Kim G S. Effect of mixing on thermal and mechanical properties of aerogel-PVB composites.
Journal of Materials Science,2003,38(9):1961-1966
|
CSCD被引
18
次
|
|
|
|
12.
杨海龙. 硅酸钙复合纳米孔超级绝热板材的研制.
宇航材料工艺,2006,36(2):18-22
|
CSCD被引
11
次
|
|
|
|
13.
冯坚. 纤维增强SiO_2气凝胶隔热复合材料的制备及其性能.
国防科技大学学报,2010,32(1):40-44
|
CSCD被引
31
次
|
|
|
|
14.
吕鹏鹏. 常压干燥制备SiO_2气凝胶的研究.
材料工程,2012(4):22-26
|
CSCD被引
5
次
|
|
|
|
15.
Rao A V. Organic surface modification of TEOS based silica aerogels synthesized by co-precursor and derivatization methods.
Journal of Sol-Gel Science and Technology,2004,30(3):141-147
|
CSCD被引
6
次
|
|
|
|
16.
Yasuki K. Synthesis of monolithic hierarchically porous iron-based xerogels from iron (III) salts via an epoxide-mediated sol-gel process.
Chemistry of Materials,2012,24(11):2071-2077
|
CSCD被引
1
次
|
|
|
|
17.
Venkateswara R A. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor.
Journal of Non-Crystalline Solids,2003,330(1):187-195
|
CSCD被引
38
次
|
|
|
|
18.
Jeong A Y. Characterization of hydrophobic SiO_2powders prepared by surface modification on wet gel.
Journal of Sol-Gel Science and Technology,2000,19(1/3):483-487
|
CSCD被引
13
次
|
|
|
|
19.
Lee C J. Synthesis of silica aerogels from waterglass via new modified ambient drying.
Journal of Materials Science,2002,37(11):2237-2241
|
CSCD被引
18
次
|
|
|
|
20.
Rao A P. Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions.
Journal of Sol-Gel Science and Technology,2008,47(1):85-94
|
CSCD被引
3
次
|
|
|
|
|