帮助 关于我们

返回检索结果

高维多目标优化中基于稀疏特征选择的目标降维方法
Objective Reduction with Sparse Feature Selection for Many Objective Optimization Problem

查看参考文献19篇

文摘 目标降维算法通过去除冗余的目标达到简化问题规模的目的,为求解高维多目标优化问题提供了一种新的思路和方法.近似解集的几何结构特征和Pareto占优关系从不同侧面反映了多目标优化问题的内在结构特性,而现有算法仅利用其中一种特征分析目标之间的关系,具有较大局限性.本文提出基于稀疏特征选择的目标降维方法,该方法利用近似解集的几何结构特征构建稀疏回归模型,求解高维目标空间映射为低维目标子空间的稀疏投影矩阵,依据此矩阵度量目标的重要性,并利用Pareto占优关系改变程度选择满足误差阈值的目标子集,实现目标降维.通过与其他已有目标降维算法比较,实验结果表明本文提出的降维算法具有较高的准确性,并且受近似解集质量的影响较小.
其他语种文摘 Objective reduction approach is an effective means for many-objective optimization problems by eliminating redundant objectives with respect to the original objective set. The geometrical structural characteristics and Pareto-dominance relation of approximation set can represent the characteristics of the original problem in different aspects. This paper proposed a new algorithm based on sparse feature selection. It used the geometrical structural characteristics to construct a graph representing the original problem. A sparse projection matrix mapping the high dimensional data into low dimensional space was then learned by a sparse regression model,which was used to measure the importance of each objective. The change of Pareto-dominance relation induced by reduced set was also adopted to identify a minimum set with error not exceeding threshold value. By comparing with other algorithms, the experimental results show that the accuracy of the new algorithm outperforms other dimension reduction techniques, and is scarcely effected by the quality of approximation set.
来源 电子学报 ,2015,43(7):1300-1307 【核心库】
DOI 10.3969/j.issn.0372-2112.2015.07.008
关键词 高维多目标优化 ; 目标降维 ; 稀疏特征选择
地址

深圳大学信息工程学院, 深圳市现代通信与信息处理重点实验室, 广东, 深圳, 518060

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  广东省深圳市科技计划项目 ;  深圳市基础研究计划项目
文献收藏号 CSCD:5485716

参考文献 共 19 共1页

1.  Farina M. On the optimal solution definition for many-criteria optimization problems. Proceedings of Fuzzy Information Processing Society,2002:233-238 CSCD被引 2    
2.  巩敦卫. 基于集合的高维多目标优化问题的进化算法. 电子学报,2014,42(1):77-83 CSCD被引 18    
3.  Lopez-Jaimes A. Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems. Information Sciences,2014,277:1-20 CSCD被引 5    
4.  孔维健. 高维多目标进化算法研究综述. 控制与决策,2010,25(3):321-326 CSCD被引 32    
5.  Wagner T. Pareto-, aggregation-, and indicator-based methods in many-objective optimization. Evolutionary Multi-Criterion Optimization. EMO,2007:742-756 CSCD被引 1    
6.  Ishibuchi H. Evolutionary manyobjective optimization: a short review. IEEE World Congress on Computational Intelligence,2008:2419-2426 CSCD被引 3    
7.  Bringmann K. Approximating the least hypervolume contributor: NP-hard in general,but fast in practice. Theoretical Computer Science,2012,425:104-116 CSCD被引 2    
8.  Lopez Jaimes A. Objective reduction using a feature selection technique. Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,2008:673-680 CSCD被引 1    
9.  Schutze O. On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Transactions on Evolutionary Computation,2011,15(4):444-455 CSCD被引 10    
10.  Sinha A. Using objective reduction and interactive procedure to handle many-objective optimization problems. Applied Soft Computing,2013,13(1):415-427 CSCD被引 3    
11.  Saxena D K. Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Transactions on Evolutionary Computation,2013,17(1):77-99 CSCD被引 13    
12.  Brockhoff D. Objective reduction in evolutionary multiobjective optimization: theory and applications. Evolutionary Computation,2009,17(2):135-166 CSCD被引 12    
13.  Qian M. Robust unsupervised feature selection. Proceedings of 23rd International Joint Conference on Artificial Intelligence,2013:1621-1627 CSCD被引 1    
14.  Hou C. Feature selection via joint embedding learning and sparse regression. Proceedings of 22nd International Joint Conference on Artificial Intelligence,2011:1324-1329 CSCD被引 1    
15.  向馗. 主元分析中的稀疏性. 电子学报,2012,40(12):2525-2532 CSCD被引 7    
16.  Cai D. Spectral regression for dimensionality reduction. Department of Computer Science Technical Report No. 2856,2007 CSCD被引 1    
17.  He X. Neighborhood preserving embedding. IEEE International Conference on Computer Vision,2005:1208-1213 CSCD被引 2    
18.  Saxena D K. Objective reduction in many-objective optimization: linear and non-linear algorithms. IEEE Transactions on Evolutionary Computation,2013,1(17):77-99 CSCD被引 13    
19.  Zitzler E. Indicator-based selection in multi-objective search. Proceedings on Parallel Problem Solving from Nature, 3242,2004:832-842 CSCD被引 1    
引证文献 10

1 郑传宇 飞翼翼型高维目标空间多学科综合优化设计 空气动力学学报,2017,35(4):587-597
CSCD被引 8

2 罗乃丽 利用冲突信息降维的进化高维目标优化算法 信号处理,2017,33(9):1169-1178
CSCD被引 4

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号