纳米颗粒与细胞的交互作用
Interaction between nanoparticles and the cell
查看参考文献125篇
文摘
|
与大块材料相比, 纳米尺度材料有着独特的光学、电学、力学和生物学性质, 这使得纳米颗粒在药物输运和肿瘤成像等医学方面展现出巨大的应用前景. 同时, 愈来愈多的工业化纳米颗粒和纳米材料的制备, 使得其生物安全性也受到很大的关注. 由于纳米颗粒进入体内后的作用发生在细胞层面上, 这要求我们很好地去理解纳米颗粒与细胞之间的相互作用. 大量的实验表明, 纳米颗粒吸附在细胞膜表面, 并通过不同方式被细胞所摄取. 纳米颗粒的尺寸、形状、表面化学性质、表面电荷分布、拓扑结构以及颗粒弹性性能等都对两者间的相互作用有着显著的影响. 本文简要介绍颗粒进入细胞的路径, 着重阐述影响颗粒/细胞交互作用的关键因素, 并对后续的研究方向进行展望. |
其他语种文摘
|
Compared with bulk materials, nanomaterials have unique optical, electronic, mechanical, and biological properties that have enormous potential for use in drug delivery and cancer imaging. Since nanoparticles (NPs) interact with the human body at the cellular level, there is a need for us to understand the interaction between NPs and cells. Many experimental results show that NPs adsorb onto the cell membrane and are internalized by the cell through various pathways. Due to the complexity of cells, as well as their host environments, the size, shape, surface chemical properties, charge distribution, structural topology, and elasticity of NPs can each have a large influence on this interaction. For instance, some types of cells are better able to take up NPs with greater curvature to their shape, while others are better able to take up NPs with less curvature. Similarly, some cells internalize soft-structured NPs, while others respond best to rigid NPs. The mechanisms underlying these differences in interaction can be explained with theoretical models and simulations. Here, we briefly introduce the pathways for cellular uptake of nanoparticles, and then review the recent progress in identifying factors that affect this nanoparticle-cell interaction. We also discuss the potential for future research. |
来源
|
科学通报
,2015,60(21):1976-1986 【核心库】
|
DOI
|
10.1360/N972014-01199
|
关键词
|
纳米颗粒
;
细胞膜
;
交互作用
;
药物输运
;
细胞毒性
;
细胞内吞
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
国家纳米科学中心, 北京, 100190
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0023-074X |
学科
|
基础医学;一般工业技术 |
基金
|
国家自然科学基金优秀青年科学基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:5485224
|
参考文献 共
125
共7页
|
1.
Iversen T G. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies.
Nano Today,2011,6:176-185
|
CSCD被引
24
次
|
|
|
|
2.
Devadasu V R. Can controversial nanotechnology promise drug delivery?.
Chem Rev,2013,113:1686-1735
|
CSCD被引
6
次
|
|
|
|
3.
Tang F Q. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery.
Adv Mater,2012,24:1504-1534
|
CSCD被引
103
次
|
|
|
|
4.
Elsabahy M. Design of polymeric nanoparticles for biomedical delivery applications.
Chem Soc Rev,2012,41:2545-2561
|
CSCD被引
32
次
|
|
|
|
5.
Sahay G. Endocytosis of nanomedicines.
J Control Release,2010,145:182-195
|
CSCD被引
50
次
|
|
|
|
6.
Boisselier E. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity.
Chem Soc Rev,2009,38:1759-1782
|
CSCD被引
71
次
|
|
|
|
7.
Duan X P. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking.
Small,2013,9:1521-1532
|
CSCD被引
30
次
|
|
|
|
8.
Wang B. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance.
Accounts Chem Res,2013,46:761-769
|
CSCD被引
30
次
|
|
|
|
9.
Nel A E. Understanding biophysicochemical interactions at the nano-bio interface.
Nat Mater,2009,8:543-557
|
CSCD被引
173
次
|
|
|
|
10.
Gao H J. Probing mechanical principles of cell-nanomaterial interactions.
J Mech Phys Solids,2014,62:312-339
|
CSCD被引
1
次
|
|
|
|
11.
Zhao F. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials.
Small,2011,7:1322-1337
|
CSCD被引
40
次
|
|
|
|
12.
Mu Q X. Chemical basis of interactions between engineered nanoparticles and biological systems.
Chem Rev,2014,114:7740-7781
|
CSCD被引
10
次
|
|
|
|
13.
Doherty G J. Mechanisms of endocytosis.
Annu Rev Biochem,2009,78:857-902
|
CSCD被引
74
次
|
|
|
|
14.
Champion J A. Role of target geometry in phagocytosis.
Proc Natl Acad Sci USA,2006,103:4930-4934
|
CSCD被引
39
次
|
|
|
|
15.
Canton I. Endocytosis at the nanoscale.
Chem Soc Rev,2012,41:2718-2739
|
CSCD被引
20
次
|
|
|
|
16.
Wang Z J. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells.
ACS Nano,2009,3:4110-4116
|
CSCD被引
9
次
|
|
|
|
17.
Agarwal R. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
Proc Natl Acad Sci USA,2013,110:17247-17252
|
CSCD被引
19
次
|
|
|
|
18.
Verma A. Effect of surface properties on nanoparticle-cell interactions.
Small,2010,6:12-21
|
CSCD被引
49
次
|
|
|
|
19.
Wong-Ekkabut J. Computer simulation study of fullerene translocation through lipid membranes.
Nat Nanotechnol,2008,3:363-368
|
CSCD被引
17
次
|
|
|
|
20.
Lin J Q. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship.
ACS Nano,2010,4:5421-5429
|
CSCD被引
17
次
|
|
|
|
|