帮助 关于我们

返回检索结果

钨基材料强韧化技术的现状与发展趋势
Current Status and Development Trend of Toughening Technology of Tungsten-Based Materials

查看参考文献45篇

王爽 1   罗来马 2 *   赵美玲 1   罗广南 3   朱晓勇 2   吴玉程 2  
文摘 开发受控核聚变能被认为是解决人类能源问题的重要途径。但在实际应用中仍存在许多难题,其中托玛卡克装置对第一壁材料具有很高要求。国内外一系列实验研究表明钨具有高熔点、良好的导热性和热冲击性、低热溅额等优点,是未来托卡马克聚变堆中最合适的面向等离子体第一壁材料。但是,钨作为将来工程化应用的面向等离子体材料,存在韧脆转变温度高、再结晶温度低以及聚变环境下高热流和高粒子流下的辐照损伤等问题。本文重点综述了从钨材料组成设计方面提高钨基材料强韧性方法的研究进展,包括合金化、纤维增韧、弥散强化及大塑性变形制备超细晶钨等手段,介绍了实现这些手段采用的材料组成设计、实验方法、作用机制、对钨基材料的改善效果及存在的不足,分析了未来钨基材料强韧化技术的发展趋势。
其他语种文摘 Exploiting controlled thermonuclear fusion energy was considered as an important solution to solve the energy problem of mankind. But in the practical use of the fusion energy,there are still many problems,for example,Tokamak device has high demands for the first wall materials. A series of experimental studies home and abroad showed that tungsten was considered as the most promising material for plasma first wall of Tokamak fusion reactor in the future,because of its high melting point,good thermal conductivity and thermal shock,and low sputtering. However,tungsten,as the plasma facing materials for engineering application in the future,exhibited problems including high ductile-brittle transition temperature,low recrystallization temperature and irradiation damage problems in the fusion environment of high heat and high particle flow. This paper reviewed the research development of tungsten material composition designing to solve the tungsten brittleness problem,for example,alloying,fiber toughening,dispersion strengthening,large plastic deformation of ultrafine grained tungsten and other means,and the applied material composition designing,experimental methods, mechanism,improvement of the tungsten-based materials and shortcomings were introduced,and the research trend of tungsten-based materials toughening technology in the future was analyzed.
来源 稀有金属 ,2015,39(8):741-748 【核心库】
DOI 10.13373/j.cnki.cjrm.2015.08.011
关键词 钨基材料 ; 面向等离子体材料 ; 强韧化技术
地址

1. 合肥工业大学材料科学与工程学院, 安徽, 合肥, 230009  

2. 合肥工业大学材料科学与工程学院, 有色金属与加工技术国家地方联合工程研究中心, 安徽, 合肥, 230009  

3. 中国科学院等离子体物理研究所, 安徽, 合肥, 230031

语种 中文
文献类型 综述型
ISSN 0258-7076
学科 金属学与金属工艺
基金 国际热核聚变实验堆(ITER) 计划专项项目 ;  中央高校基本科研业务费专项资金 ;  国家大学生创新项目
文献收藏号 CSCD:5481510

参考文献 共 45 共3页

1.  Bloom E E. Critical questions in materials science and engineering for successful development of fusion power. Journal of Nuclear Materials,2007,367/370(Part A):1 CSCD被引 7    
2.  Federici G. Critical plasma-wall interaction issues for plasma-facing materials and components in near-term fusion devices. Journal of Nuclear Materials,2000,283/287(Part 1):110 CSCD被引 1    
3.  Pitts R A. Physics basis and design of the TTER plasma-facing components. Journal of Nuclear Materials,2011,415(3):S957 CSCD被引 18    
4.  Federici G. Key ITER plasma edge and plasma-material interaction issues. Journal of Nuclear Materials,2003,313/316(EX1/EX2):11 CSCD被引 14    
5.  Singheiser L. Plasma-facing materials for thermo-nuclear fusion devices. Transactions of the Indian Institute of Mentals,2009,62(2):123 CSCD被引 4    
6.  Clementson J. Atomic data of tungsten for current and future uses in fusion and plasma science. Application of Accelerators in Research and Industry,2013:78 CSCD被引 1    
7.  Rieth M. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. Journal of Nuclear Materials,2013,432(1/3):482 CSCD被引 48    
8.  Philipps V. Tungsten as material for plasma-facing components in fusion devices. Journal of Nuclear Materials,2011,415(S1):S2 CSCD被引 48    
9.  Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten. Journal of Nuclear Materials,2003,323(2/3):304 CSCD被引 11    
10.  Rupp D. Experimental investigation of the fracture toughness of polycrystalline tungsten in the brittle and semi-brittle regime. Journal of Nuclear Materials,2009,386/388:591 CSCD被引 3    
11.  Rupp D. Fracture toughness and microstructural characterization of polycrystalline rolled tungsten. Journal of Refractory Metals and Hard Materials,2010,28(6):669 CSCD被引 8    
12.  Avettand-Fenoёl M N. Effect of ball milling parameters on the microstructure of W-Y powders and sintered sample. International Journal of Refractory Metals Hard Materials,2003,21(3/4):205 CSCD被引 5    
13.  Pintsuk G. Thermo-mechanical and thermal shock characterization of potassium doped tungsten. International Journal of Refractory Metals & Hard Materials,2010,28(5):661 CSCD被引 11    
14.  Kurishita H. Development of Mo alloys with improved resistance to embitterment by recrystallization and irradiation. Journal of Nuclear Materials,1996,233/237(Part A):557 CSCD被引 5    
15.  Shen Q. Wave impedance of W-Mo system composite. Journal of University Science and Technology Beijing,2003,10(5):35 CSCD被引 2    
16.  Ohser-Wiedemann R. Spark plasma sintering of Mo-W powders prepared by mechanical alloying. Journal of Alloys and Compounds,2013,560(3):27 CSCD被引 7    
17.  Romaner L. Effect of rhenium on the dislocation core structure in tungsten. Physical Review Letter,2010,104:195503 CSCD被引 18    
18.  陈勇. 面对等离子体钨基复合材料的制备及其性能的研究,2009:17 CSCD被引 1    
19.  李锐. 钨纤维的排布方式对钨纤维增强铜基复合材料密度和导电性的影响. 稀有金属,2013,37(2):243 CSCD被引 3    
20.  赵冰. 连续SiC纤维增强钛基复合材料横向强度分析. 稀有金属,2013,37(3):372 CSCD被引 12    
引证文献 7

1 王瑞欣 弥散强化钨镍铁高比重合金的制备及性能研究 稀有金属,2017,41(1):20-24
CSCD被引 4

2 王旭 W-Ni复合金属粉体在典型氯化物介质中的电解合成及表征 稀有金属,2017,41(6):629-634
CSCD被引 0 次

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号