基于太阳光度计分层算法获取气溶胶标高
Aerosol Scale Height Measured by Sun-Photometer Based on Stratified Atmospheric Algorithm
查看参考文献17篇
文摘
|
大气气溶胶具有很强的时空变化特性,而气溶胶标高是反映大气气溶胶垂直分布特性的一个重要参量,常规获取大气气溶胶标高的方法需要多种仪器进行联合测量.基于均匀平行球面大气分层的假定,研究了利用太阳光度计的分层算法获取大气气溶胶标高的方法.结果表明,利用该分层算法可仅利用太阳光度计一种仪器同时获得各分层大气平均消光系数和光学厚度、气溶胶垂直分布高度、气溶胶标高等参数.该算法所得气溶胶标高与常规方法获得的气溶胶标高进行比较,相对误差在10%以内;得到的大气总光学厚度与整层算法计算的大气总光学厚度的相对误差小于2%.因而,利用该分层算法仅使用太阳光度计一种仪器来获取气溶胶标高的方法是可行的,拓展了太阳光度计的应用. |
其他语种文摘
|
Atmospheric aerosol has a strong characteristic of temporal and spatial variation. Aerosol scale height is an important physical parameter to reflect atmospheric aerosol vertical distribution, which is often measured by several instruments simultaneously. Based on the assumption of uniform parallel sphere of stratified atmosphere, a new method that aerosol scale height is obtained only by sun-photometer is studied, using stratified atmospheric algorithm. The research indicates that the parameters such as average extinction coefficient and the optical depth of stratified atmosphere, atmospheric aerosol vertical distribution height, and aerosol scale height can be gotten by the stratified atmospheric algorithm only using sun-photometer. Compared with conventional method, the relative error of aerosol scale height gained by stratified atmospheric algorithm is less than 10%. The relative error of atmospheric optical depth gained by stratified atmospheric algorithm and whole atmospheric algorithm is less than 2%. Therefore, using stratified atmospheric algorithm to obtain aerosol scale height only by sun-photometer is feasible, and it extends the sun-photometer's application. |
来源
|
光子学报
,2015,44(6):0601002-1-0601002-9 【核心库】
|
DOI
|
10.3788/gzxb20154406.0601002
|
关键词
|
大气光学
;
太阳光度计
;
分层算法
;
气溶胶标高
;
气溶胶垂直分布高度
;
气溶胶光学厚度
;
消光系数
|
地址
|
中国科学院安徽光学精密机械研究所, 中国科学院大气成分与光学重点实验室, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学;大气科学(气象学) |
基金
|
气象专项课题
|
文献收藏号
|
CSCD:5458148
|
参考文献 共
17
共1页
|
1.
周任君. 平流层气溶胶的准两年周期特征分析.
地球物理学报,2011,54(5):1175-1181
|
CSCD被引
1
次
|
|
|
|
2.
Uzhegov V N. The height of homogeneous aerosol atmosphere in visible and IR wavelength range.
SPIE. 5473,2004
|
CSCD被引
1
次
|
|
|
|
3.
Calvello M. Hight resolution measurement of aerosol equivalent scale height over wide range.
Chemical Engineering Transactions,2008,16:61-66
|
CSCD被引
2
次
|
|
|
|
4.
Qiu J H. Broadband extinction method to determine aerosol optical depth from accumulated direct solar radiation.
Journal of Applied Meteorology,2003,42:1611-1624
|
CSCD被引
11
次
|
|
|
|
5.
Qiu J H. A study of the scaling height of the tropospheric aerosol and its extinction coefficient profile.
Aerosol Science,2005,36(3):361-371
|
CSCD被引
10
次
|
|
|
|
6.
WMO.
Guide to meteorological instruments and methods of observation(7th ed.). WMO-No.8,1983:470
|
CSCD被引
1
次
|
|
|
|
7.
韩永. 可见光波段气溶胶标高的实验研究.
大气与环境光学学报,2006,1(1):33-40
|
CSCD被引
8
次
|
|
|
|
8.
韩永. 沿海和内陆地区多波长光谱气溶胶标高的比较分析.
光谱学与光谱分析,2009,29(1):33-37
|
CSCD被引
8
次
|
|
|
|
9.
Wong M S. Modeling of aerosol vertical profiles using GIS and remote sensing.
Sensors,2009,9(6):4380-4389
|
CSCD被引
2
次
|
|
|
|
10.
Ansmann A. Measurement of atmospheric aerosol extinction profile with Raman lidar.
Optics Letters,1990,15(13):746-748
|
CSCD被引
21
次
|
|
|
|
11.
Matthais V. Aerosol lidar intercomparison in the framework of the EARLINET project 1 Instruments.
Applied Optics,2004,43(4):961-976
|
CSCD被引
10
次
|
|
|
|
12.
Mccormick M P. Spaceborne lidars.
The Review of Laser Engineering,1995,23(2):89-93
|
CSCD被引
2
次
|
|
|
|
13.
Spinhirne J D. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique.
Journal of Applied Meteorology,1980,19:426-438
|
CSCD被引
7
次
|
|
|
|
14.
徐梦春. 基于太阳光度计测量确定分层大气消光系数.
光学学报,2014,34(12):1201002
|
CSCD被引
5
次
|
|
|
|
15.
韩永. 利用大气能见度获取多波长气溶胶光学特性.
红外与激光工程,2007,36(2):265-269
|
CSCD被引
13
次
|
|
|
|
16.
岳斌. 半导体激光雷达的斜程能见度测量方法.
红外与激光工程,2009,38(1):135-139
|
CSCD被引
9
次
|
|
|
|
17.
周秀骥.
高等大气物理学,1991:90-1106
|
CSCD被引
3
次
|
|
|
|
|