兰坪盆地西缘沉积岩容矿脉状Cu-Ag( ±Pb-Zn)多金属矿床成矿流体特征
Characteristics of ore-forming fluids of Cu-Ag ( ± Pb-Zn) polymetallic deposits in western Lanping Basin, Yunnan Province
查看参考文献72篇
文摘
|
兰坪盆地西部发育大量沉积岩容矿的Cu-Ag-Pb-Zn多金属矿床,矿体的分布受逆冲推覆系统控制。逆冲推覆系统根部带主要发育脉状Cu-Ag(Mo)矿床(包括金满Cu-Ag、连城Cu-Mo及一系列脉状Cu矿床);前锋带主要发育Pb-Zn-Ag(±Cu)矿床(包括白秧坪Pb-Zn-Ag-Cu多金属矿集区及一系列小型的Pb-Zn矿床)。文章系统分析了盆地西缘Cu-Ag( ±Pb-Zn)多金属矿床流体包裹体及C、H、O同位素特征进行了根部带Cu和前锋带Pb-Zn矿床成矿流体的对比研究,探讨了盆地西缘Cu-Ag(±Pb-Zn)多金属矿床成矿流体的性质、来源及演化。研究表明,根部带的Cu-Ag(Mo)多金属矿床成矿流体主要为与围岩充分交换的深循环大气降水,具有富CO_2、中高温(集中在280~ 340℃)、中低盐度w(NaCl_(eq)(1%~4%)的特点;前锋带Pb-Zn-Ag(±Cu)多金属矿床成矿流体则主要为源于大气降水的盆地卤水,具有贫CO_2、中低温(集中在160~240℃)、中高盐度w(NaCl_(eq))集中于22.0%~24.0%)的特点。 |
其他语种文摘
|
The Lanping Basin is a significant Pb-Zn-Cu-Ag mineralization belt of the Sanjiang Tethyan metallogenic province in China. A series of sediments-hosted Himalayan Cu-Ag-Pb-Zn polymetallic deposits have been discovered in the western part of the Basin, controlled by a thrust-nappe system. In the thrust-nappe system, the Cu orebodies mainly occur in the western and relatively deep part of the mineralization system (the root zone), whereas the Pb-Zn-Ag ( ± Cu) orebodies occur in the eastern and relatively shallow part of the system (the front zone), both with vein-type mineralization. In this paper the authors present new data, combined with existing data on fluid inclusions, isotopes and geological characteristics of representative deposits, to provide the first study that contrasts mineralizing fluids in the Cu-Ag (Mo) and Pb-Zn-Ag (Cu) polymetallic deposits. Fluid inclusion and isotope studies show that the Cu-Ag (Mo) mineralization in the root zone was derived predominantly from deep crustal fluids, with the addition of basinal brines. The deep crustal fluids are marked by high CO_2 content, relatively high temperatures (280℃ to 340℃) and low salinities (1% to 4%). In comparison, hydrothermal activity associated with the Pb-Zn-Ag ( ± Cu) deposits in the front zone is characterized by basinal brine, with relatively low temperatures (160℃ to 240℃), high salinities (22.0% to 24.0%),and low CO_2 concentrations. Although evolved meteoric waters have predominantly been proposed as the source for deep crustal fluids, magmatic and metamorphic components cannot be completely excluded. The basinal brine was predominantly derived from meteoric water. |
来源
|
矿床地质
,2015,34(3):497-520 【核心库】
|
DOI
|
10.16111/j.0258-7106.2015.03.005
|
关键词
|
地球化学
;
成矿流体
;
Cu-Ag( ±Pb-Zn)多金属矿床
;
兰坪盆地西缘
;
云南
|
地址
|
1.
成都地质矿产研究所, 矿床地球化学国家重点实验室, 四川, 成都, 610081
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
3.
成都理工大学地球科学学院, 四川, 成都, 610059
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7106 |
学科
|
地质学 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
国家973计划
;
国土资源部中国地质调查局综合研究项目
|
文献收藏号
|
CSCD:5457171
|
参考文献 共
72
共4页
|
1.
Bodnar R J. Revised equation and table for determining the freezing point depression of H_2O-NaCl solutions.
Geochim. Cosmochim. Acta,1993,57:683-684
|
CSCD被引
476
次
|
|
|
|
2.
Cameron E M. Archean gold mineralization andoxidized hydrothermal fluids.
Econ. Geol,1987,82:1177-1191
|
CSCD被引
11
次
|
|
|
|
3.
Chi G X. Abundance of CO_2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman, Yunnan, China:Implications for mineralization environment and classification of the deposit.
Mineralium. Deposita,2011,46:365-380
|
CSCD被引
24
次
|
|
|
|
4.
Diamond L W. Review of the systematics of CO_2-H_2O fluid inclusions.
Lithos,2001,55:69-99
|
CSCD被引
53
次
|
|
|
|
5.
Friedman I. Compilation of stable isotope fractionation factors of geochemical interest.
US Geol. Survey Prof. Paper,1977:440
|
CSCD被引
10
次
|
|
|
|
6.
He L Q. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping Foreland Fold Belt, eastern margin of Tibetan Plateau.
Ore Geology Reviews,2009,36:106-132
|
CSCD被引
58
次
|
|
|
|
7.
Higgins N C. Progressive ~(18)O depletion during CO_2 separation from a carbon-dioxide-rich hydrothermal fluid: Evidence from the Grey River tungsten deposit. New found land.
Canadian Journal of Earth Sciences,1982,19:2247-2257
|
CSCD被引
20
次
|
|
|
|
8.
Ji H B. Geochemistry of Jinman copper vein deposit, west Yunnan Province, China- Ⅱ . Fluid inclusion and stable isotope geochemical characteristics.
Chinese J. Geochemistry,1998,17(1):81-90
|
CSCD被引
8
次
|
|
|
|
9.
Kerrich R. The gold-carbonate associations: Source of CO_2 and CO_2 fixation reactions in Archean lode deposits.
Chemical Geology,1981,33:265-294
|
CSCD被引
17
次
|
|
|
|
10.
Misra K C.
Understanding mineral deposits,2000:1-845
|
CSCD被引
10
次
|
|
|
|
11.
Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.
Econ. Geol,1972,67:551-578
|
CSCD被引
538
次
|
|
|
|
12.
Ohmoto H. Isotopes of sulfur and carbon.
Geochemistry of Hydrothermal Ore Deposits,1979:509-567
|
CSCD被引
199
次
|
|
|
|
13.
Phillips G N. Link between gold provinces.
Econ. Geol,1993,88:1084-1098
|
CSCD被引
23
次
|
|
|
|
14.
Roedder E. Fluid inclusions.
Reviews in Mineralogy 12,1984:644
|
CSCD被引
3
次
|
|
|
|
15.
Rosenbaum J M. Mantle fluids: Evidence from fluid inclusions.
Geochim. Cosmochim. Acta,1996,60:3229-3252
|
CSCD被引
11
次
|
|
|
|
16.
Su W C. Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock sulfidation by deep crustal fluids.
Econ. Geol,2009,104:73-93
|
CSCD被引
92
次
|
|
|
|
17.
Taylor B M. Magmatic volatiles: Isotope variation of C,H, S. In: Stable isotopes in high temperature geological pross. mineralogical society of America.
Reviews in Mineralogy,1986,16:185-226
|
CSCD被引
2
次
|
|
|
|
18.
Tian S H. S, C, O, H isotope data and noble gas studies of the Maoniuping LREE deposit, Sichuan Province, China: A mantle connection for mineralization.
Acta Geologica Sinica, English edition,2006,80:540-549
|
CSCD被引
7
次
|
|
|
|
19.
Veizer J. Correlation of ~(13)C/~(12)C and 34S/32S secular variation.
Geochim. Cosmochim. Acta,1980,44:579-588
|
CSCD被引
70
次
|
|
|
|
20.
Wilkinson J J. Fluid inclusions in hydrothermal ore deposits.
Lithos,2001,55:229-272
|
CSCD被引
163
次
|
|
|
|
|