EPS外保温材料火灾蔓延速率的数值模拟与试验研究
Numerical simulation and experimental investigation on the fire propagation of EPS material
查看参考文献17篇
文摘
|
根据火灾动力学理论,建立了热塑性外保温材料火蔓延速率模型。该模型对实际燃烧过程做了一定的假设简化,主要考虑了材料厚度和火源位置对材料燃烧发展过程的影响。并提出无量纲参数"耦合燃烧度",用来表征热塑性材料的燃烧壁面与高温熔滴形成的油池火之间相互作用的程度。基于ISO9705全尺寸热释放速率实验室,采用20×20×10 cm~3正庚烷油槽火源为火源样式,设计了4种不同的燃烧工况研究EPS外保温材料的火蔓延规律和影响因素。结果表明:其火蔓延速率随时间变化呈指数增长,EPS的火蔓延速率的回归方程通式为V_p(t)=Aexp(Bt),与理论推导方程V_p(t)=φ_1exp(φ_2t)有较好的相关性。当EPS的厚度为50 mm时,火蔓延速率增幅最小;"耦合燃烧度"越大,火蔓延速率增长越快;"耦合燃烧度"随材料厚度的增加而增大;不同火源位置下,"耦合燃烧度"从大到小为中火、底火、顶火、边角火。理论模型与试验结果有较好的一致性,可以有效预测热塑性外保温材料的火蔓延速率。 |
其他语种文摘
|
This article is aimed at introducing a numerical simulation and an experimental investigation on the fire propagation rate of the EPS (Expanded Polystyrene) material. The reason for us to pick up the research topic is that we have seen the danger and hazardness of the disasters and damages that take place every year and urgent needs have come to us to reduce such fire hazards through a theoretical research to make clear the combustion characteristic features. In order to achieve the goal, we have first of all established a fire spread rate model for the thermoplastic insulation material, which has been established on the basis of a series of hypothetical simplification in accordance with the fire dynamics theory while considering the effects of the material thickness and fire location on the combustion. In the model we have also pointed out that the fire spreading rate increases exponentially with the lasting time of the fire in line with the derivation of the combustion characteristic parameters. In addition, the dimensionless parameter -"the coupled combustion degree" which represents the mutual promoting role on the upward fire spread and flowing fire was proposed. In this paper, we have carried out full-size experiments of heat release rate based on the ISO9705 laboratory testing results of the fire spread rate of thermoplastic insulation material with the laboratory apparatus including iron framings, thermal infrared images, the thermocouples, data acquisition instruments for temperature, cameras, anemographs and computers with four burning conditions designed with the fire styles of 20×20×10 cm~3 normal heptane tanks. In hoping to measure all the testing samples, we have laid out 32 K-sheathed thermocouples on every testing sample, each having been tested for 2 or 3 times for reducing likely errors. Thus, we have made clear the effects of the material thickness and the fire location on the EPS fire rate spreading. And, eventually, the results of our experiments and numerical simulation show that the fire spreading rate tends to increase exponentially with the time, which is well in accord with the theoretical hypothesis. All the above results of investigation and simulation demonstrate that the fire spread rate tends to increase exponentially with the fire time lasting. The greater the thickness and the "coupled combustion degree" increase, the faster the fire spreading rate changes, whereas the sequence of the "coupled combustion degree" under different fire locations turns out to be: middle fire > bottom fire > top fire > corner fire. The simulation and the investigation results we have gained also prove in nice accord with the experimental data and can be used to predict the fire spreading rate of the thermoplastic insulation materials effectively. |
来源
|
安全与环境学报
,2015,15(2):144-150 【核心库】
|
DOI
|
10.13637/j.issn.1009-6094.2015.02.031
|
关键词
|
安全工程
;
EPS
;
火蔓延速率
;
材料厚度
;
火源位置
;
熔融流淌
|
地址
|
1.
天津工业大学环境与化学工程学院, 天津, 300387
2.
信阳市消防支队, 河南, 信阳, 464100
3.
中国科学技术大学, 火灾科学国家重点实验室, 合肥, 230026
4.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6094 |
学科
|
安全科学 |
基金
|
公安部科技强警专项
|
文献收藏号
|
CSCD:5435476
|
参考文献 共
17
共1页
|
1.
薄建伟. Fire risks of external insulation material and its control measures.
消防科学与技术,2012,31(3):296-299
|
CSCD被引
3
次
|
|
|
|
2.
Zhang J. Effect of melting behavior on upward flame spread of thermoplastics.
Fire and Materials,1997,21(1):1-6
|
CSCD被引
14
次
|
|
|
|
3.
Bakhtiyari S. The effective parameters for reaction-to-fire properties of expanded polystyrene foams in bench scale.
Iranian Polymer Journal,2010,19:27-37
|
CSCD被引
5
次
|
|
|
|
4.
Butler K M.
A numerical model for combustion of bubbling thermoplastic materials in microgravity,2002
|
CSCD被引
1
次
|
|
|
|
5.
Xie Qiyuan. Large scale experimental study on the effects of flooring materials on combustion behavior of thermoplastics.
Journal of Macromolecular Science, Part A: Pure and Applied Chemistry,2008,45(7):529-533
|
CSCD被引
5
次
|
|
|
|
6.
徐亮.
典型热塑性装饰材料火灾特性研究,2007
|
CSCD被引
13
次
|
|
|
|
7.
亓延军. 聚氨酯硬泡外墙保温材料的热稳定性分析.
安全与环境学报,2012,12(4):212-216
|
CSCD被引
7
次
|
|
|
|
8.
程旭东.
受限空间内典型热塑性材料熔融流动燃烧行为研究,2010
|
CSCD被引
7
次
|
|
|
|
9.
周勇. 不同厚度杉木板垂直火蔓延速率的试验研究.
安全与环境学报,2010,10(6):142-144
|
CSCD被引
1
次
|
|
|
|
10.
Consalvij L. On the flame height definition for upward flame spread.
Fire Safety Journal,2007,42(5):384-392
|
CSCD被引
1
次
|
|
|
|
11.
Delichatsios M A. Flame heights in turbulent wall fires with significant flame radiation.
Combustion Science and Technology,1984,39(1):195-214
|
CSCD被引
1
次
|
|
|
|
12.
Quintiere J. Some factors influencing fire spread over room linings and in the ASTM E-84 tunnel test.
Fire and Materials,1985,9(2):65-74
|
CSCD被引
1
次
|
|
|
|
13.
Tu K M. Wall flame heights with external radiation.
Fire Technology,1991,27(3):195-203
|
CSCD被引
1
次
|
|
|
|
14.
Zukoski E. Mass flux in fire plumes.
Internation Association for Fire Safety Science. Proceedings of the Fourth International Symposium Fire Safety Science, Gaithersburg,1994
|
CSCD被引
1
次
|
|
|
|
15.
Yang Xiaolin. Application of inversion technique for the laplace transform on partial differential equation.
Journal of Central-South Institute of Technology,2005,9(2):65-74
|
CSCD被引
1
次
|
|
|
|
16.
Zukoski E. Entrainment in fire plumes.
Fire Safety Journal,1981,3(3):107-121
|
CSCD被引
42
次
|
|
|
|
17.
Yang Yun. Study of heat release rate of typical lining materials in full scale fire test.
Fire Safety Journal,2003,12(3):191-195
|
CSCD被引
1
次
|
|
|
|
|