先驱体浸渍-裂解法制备SiBN纤维增强SiBN陶瓷基复合材料
Preparation of SiBN fiber reinforced SiBN ceramic matrix composites by precursor infiltration-pyrolysis method
查看参考文献13篇
文摘
|
连续纤维增强氮化物陶瓷基复合材料是耐高温透波材料的主要发展方向,纤维是目前制约耐高温透波复合材料发展的关键,而SiBN陶瓷纤维是一种兼具耐高温、透波、承载的新型陶瓷纤维。以聚硅氮烷为陶瓷先驱体,以SiBN连续陶瓷纤维为增强体,采用先驱体浸渍-裂解法制备了SiBN陶瓷纤维增强SiBN陶瓷基复合材料,研究了复合材料的热膨胀特性、力学性能、断裂模式以及微观结构。结果表明:SiBN陶瓷纤维增强SiBN陶瓷基复合材料呈现明显的脆性断裂特征,复合材料的弯曲强度和拉伸强度分别为88.52 MPa和6.6 MPa,纤维的力学性能仍有待于提高。 |
其他语种文摘
|
Continuous fiber-reinforced nitride ceramic matrix composites are the main development direction of high-temperature wave-transparent materials, fiber is the pivotal issue which restrict the development of high-temperature wave-transparent composite materials, and SiBN ceramic fibers are a new kind of ceramic fibers which have excellent performances of high temperature resistance, wave transmission and mechanics. Polyborosilazane was used as ceramic precursor, and SiBN continuous fiber was used as reinforcement, SiBN fiber reinforced SiBN ceramic matrix composites were prepared by precursor infiltration-pyrolysis method. The thermal expansion properties, mechanical properties, fracture modes and microstructures of SiBN fiber reinforced SiBN ceramic matrix composites were investigated, and the preparation of new high-temperature wave-transparent ceramic matrix composites by precursor infiltration-pyrolysis was explored. The results show that the SiBN fiber reinforced SiBN ceramic matrix composites exhibits distinct brittle fracture characteristic, the bending strength and tensile strength of the composites are 88.52 MPa and 6.6 MPa respectively, which means the mechanical properties of the fiber still needs to be improved. |
来源
|
复合材料学报
,2015,32(2):484-490 【核心库】
|
DOI
|
10.13801/j.cnki.fhclxb.20140704.002
|
关键词
|
SiBN纤维
;
先驱体
;
陶瓷基复合材料
;
浸渍
;
裂解
|
地址
|
1.
航天特种材料及工艺技术研究所, 北京, 100074
2.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3851 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:5428903
|
参考文献 共
13
共1页
|
1.
邹春荣. 高性能透波陶瓷纤维的研究现状和展望.
硅酸盐通报,2013,32(2):274-279
|
CSCD被引
10
次
|
|
|
|
2.
王东. 氮化物高温透波材料及其应用研究进展.
航空制造技术,2008(3):70-73
|
CSCD被引
6
次
|
|
|
|
3.
王小宙.
SiBN透波陶瓷纤维的制备,2008
|
CSCD被引
2
次
|
|
|
|
4.
Nakano K. Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites.
Journal of the American Ceramic Society,1995,78(10):2811-2814
|
CSCD被引
15
次
|
|
|
|
5.
Haug T. Processing, properties and structure development of polymer-derived fiber-reinforced SiC.
Journal of the American Ceramic Society,1989,72(2):104-110
|
CSCD被引
2
次
|
|
|
|
6.
Sheppard L M. Progress in composites processing.
American Ceramic Society Bulletin,1990,69(4):666-673
|
CSCD被引
3
次
|
|
|
|
7.
Boisvert R P. Polymeric precursor SiC matrix composites.
Ceramic Engineering and Science Proceedings,2009,9(7/8):873-880
|
CSCD被引
1
次
|
|
|
|
8.
Li B. Effects of curing atmospheric pressure on properties of silica fibre reinforced silicon-boron nitride matrix composites derived from precursor infiltration and pyrolysis.
Materials Science and Technology,2007,22(2):81-84
|
CSCD被引
1
次
|
|
|
|
9.
Qi G J. Preparation of three-dimensional silica fiber reinforced silicon nitride composites using perhydropolysilazane as precursor.
Materials Letters,2005,59(26):3256-3258
|
CSCD被引
13
次
|
|
|
|
10.
Jansen M. Amorphous multinary ceramics in the Si-B-N-C system.
High Performance Non-Oxide Ceramics I:Structure Bond,2002,101(2):137-191
|
CSCD被引
1
次
|
|
|
|
11.
彭雨晴. 新型耐高温氮化物陶瓷纤维研究进展.
合成纤维工业,2011,34(4):39-43
|
CSCD被引
1
次
|
|
|
|
12.
鈴木一孝. スラリー及び有機ケイ素ポリマーの含浸による3次元炭素繊維強化Si_3N_4基複合材料の作製.
日本セラミックス協会学術論文誌,1998,106(3):346-348
|
CSCD被引
1
次
|
|
|
|
13.
Hwang L R. Interface compatibility in ceramic-matrix composites.
Composites Science and Technology,1996,56(12):1341-1348
|
CSCD被引
10
次
|
|
|
|
|