基于水文模型的蒸散发数据同化研究进展
A review on evapotranspiration data assimilation based on hydrological models
查看参考文献60篇
文摘
|
本文系统综述了基于水文模型的蒸散发数据同化研究,阐述了蒸散发作为非状态变量构建数据同化演算关系的难点和瓶颈,并系统分析了利用当前各种通用水文模型进行蒸散发同化的可行性。基于此,尝试提出了一种易于操作且具有水循环物理机制的蒸散发同化新方案,该方案利用具有蒸散发一土壤湿度非线性时间响应关系的分布式时变增益模型(DTVGM),并进一步完善DTVGM蒸散发机理,构建基于DTVGM水文模型的蒸散发数据同化系统。该新方案将为区域蒸散发精确模拟提供新的思路和借鉴。 |
其他语种文摘
|
This paper provided a comprehensive review of evapotranspiration data assimilation based on hydrological model. The difficulty and bottleneck for ET was elaborated to construct data assimilation relationship as a non-state variable, with a discussion and analysis about the feasibility of various hydrological models to assimilate ET. Based on this, a new evapotranspiration assimilation scheme was proposed. The scheme presented developed an improved data assimilation system that use distributed time- variant gain model (DTVGM) which contains evapotranspiration- soil humidity nonlinear time response relationship. Moreover, the evapotranspiration mechanism in DTVGM was improved to perfect the ET data assimilation system. |
来源
|
地理学报
,2015,70(5):809-818 【核心库】
|
DOI
|
10.11821/dlxb201505011
|
关键词
|
蒸散发
;
数据同化
;
水文模型
;
非状态变量
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地水循环及地表过程重点实验室, 北京, 100101
2.
北京师范大学水科学研究院, 北京, 100875
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0375-5444 |
学科
|
地球物理学 |
基金
|
国家973计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5424484
|
参考文献 共
60
共3页
|
1.
Priestley C H B. On the assessment of surface heat flux and evaporation using large- scale parameters.
Monthly Weather Review,1972,100(2):81-92
|
CSCD被引
334
次
|
|
|
|
2.
Rosenberg N J.
Microclimate: The Biological Environment,1983
|
CSCD被引
15
次
|
|
|
|
3.
Kustas W P. Use of remote sensing for evapotranspiration monitoring over land surfaces.
Hydrological Sciences Journal,1996,41(4):495-516
|
CSCD被引
30
次
|
|
|
|
4.
Vinukollu R K. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data.
Remote Sensing of Environment,2011,115(3):801-823
|
CSCD被引
36
次
|
|
|
|
5.
刘三超. 分布式水文模型结合遥感研究地表蒸散发.
地理科学,2007,27(3):354-358
|
CSCD被引
17
次
|
|
|
|
6.
Renard B. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors.
Water Resources Research,2010,46(5):W05521
|
CSCD被引
17
次
|
|
|
|
7.
Li Z. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data.
Sensors,2009,9(5):3801-3853
|
CSCD被引
11
次
|
|
|
|
8.
梁顺林.
陆面观测、模拟与数据同化,2013
|
CSCD被引
5
次
|
|
|
|
9.
Conradt T. Three perceptions of the evapotranspiration landscape: Comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances.
Hydrology and Earth System Sciences Discussions,2013,10(1):1127-1183
|
CSCD被引
2
次
|
|
|
|
10.
刘昌明.
流域水循环分布式模拟,2006
|
CSCD被引
37
次
|
|
|
|
11.
宋晓猛. 大尺度水循环模拟系统不确定性研究进展.
地理学报,2011,66(3):396-406
|
CSCD被引
18
次
|
|
|
|
12.
Tang H. Estimation and validation of evapotranspiration from thermal infrared remote sensing data.
Quantitative Remote Sensing in Thermal Infrared,2014:145-201
|
CSCD被引
2
次
|
|
|
|
13.
Pan M. Estimation of regional terrestrial water cycle using multi- sensor remote sensing observations and data assimilation.
Remote Sensing of Environment,2008,112(4):1282-1294
|
CSCD被引
13
次
|
|
|
|
14.
Qin C. Integrating remote sensing information into a distributed hydrological model for improving water budget predictions in large-scale basins through data assimilation.
Sensors,2008,8(7):4441-4465
|
CSCD被引
7
次
|
|
|
|
15.
Xie X. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter.
Advances in Water Resources,2010,33(6):678-690
|
CSCD被引
10
次
|
|
|
|
16.
Xu X. Progress in integrating remote sensing data and hydrologic modeling.
Progress in Physical Geography,2014
|
CSCD被引
2
次
|
|
|
|
17.
Spies R R. Distributed hydrologic modeling using satellite- derived potential evapotranspiration.
Journal of Hydrometeorology,2014,16(1):129-146
|
CSCD被引
2
次
|
|
|
|
18.
李新. 中国陆面数据同化系统研究的进展与前瞻.
自然科学进展,2007,17(2):163-173
|
CSCD被引
75
次
|
|
|
|
19.
Moradkhani H. Hydrologic remote sensing and land surface data assimilation.
Sensors,2008,8(5):2986-3004
|
CSCD被引
15
次
|
|
|
|
20.
Chen H. Hydrological data assimilation with the Ensemble Square- Root- Filter.
Advances in Water Resources,2013,59:209-220
|
CSCD被引
9
次
|
|
|
|
|