贵州务川瓦厂坪铝土矿床稀土元素地球化学特征及其对成矿过程的指示
Rare-earth element (REE) geochemistry and ore-forming process of the Wachangping bauxite deposit, Wuchuan-Zheng'an-Daozhen area, northern Guizhou Province, China
查看参考文献35篇
文摘
|
瓦厂坪铝土矿床是黔北务川-正安-道真铝土矿成矿区内的大型古风化壳沉积型铝土矿床,其含矿岩系位于下二叠统栖霞组(P_2q)灰岩和志留系中下统韩家店组(S_(1-2)hj)泥页岩之间的下二叠统梁山组(P_2l)地层中。铝土矿石的矿物组成主要以硬水铝石、勃姆石、高岭石、蒙脱石以及赤铁矿为主,其次还含有少量的三水铝石、黄铁矿、针铁矿、锐钛矿、锆石、长石和石英等。矿物学特征表明,铝土矿物质经历了搬运和重新沉积。研究表明铝土矿石及下伏志留系韩家店组泥页岩的稀土元素地球化学特征较相似,暗示韩家店组泥页岩可能为铝土矿主要的成矿原岩。铝土矿床的形成是下伏韩家店组泥页岩通过长期原位风化作用逐步转变而来的。铝土矿剖面上稀土元素的地球化学演化是多方面因素综合作用的结果,这些因素包括:原岩类型、p H值、矿物颗粒的大小、地下水的化学性质、剖面上Fe的浓度变化、所含矿物的种类以及稀土元素的地球化学性质等因素。根据地质学、矿物学和地球化学数据,对务川瓦厂坪铝土矿床提出了4阶段的成矿模式。 |
其他语种文摘
|
The Wachangping Bauxite deposit is one of the largest deposits in the Wuchuan-Zheng’an- Daozhen alumina metallogenic province, and belongs to paleo-weathering of crustal sedimentary deposits. Bauxite occurs in sandstone and shale of the lower-middle Silurian Hanjiadian group (S_(1-2)hj), or on the limestone surface erosion of the Upper Carboniferous Huanglong formation (C_2h) . Ore controlling strata are middle Permian Liangshan Formation (P_2l). Diaspore, boehmite, kaolinite, smectite and hematite are the major mineral components in the bauxite ore with small amounts of gibbsite, illite, goethite, pyrite, anatase, zircon, quartz and feldspar. The textural features of the ore suggest that the bauxite has an authigenic origin but locally underwent transportation and re-deposition. We can conclude that the main source of the Wachangping bauxite deposits is the underlying sandstone and shale of the lower-middle Silurian Hanjiadian formation (S_(1-2)hj) in view of their similar chondrite-normalized REE patterns. The weathered Hanjiadian group was partly converted to bauxite by means of progressive in situ lateritic weathering. Factors such as type of parent rock, pH variation in weathering solutions, grain sizes of the minerals, groundwater chemistry, variation of Fe concentration in the weathering profiles, the degree of mineral leaching, and the geochemistry of elements present, play a significant role in the distribution of trace and REE during weathering of lateritic bauxite. Based on the mineralogical, petrographical and geochemical analysis, a four stage ore-forming processes is proposed. |
来源
|
矿物学报
,2015,35(2):229-238 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2015.02.018
|
关键词
|
稀土元素地球化学
;
务川-正安-道真
;
瓦厂坪铝土矿床
;
成矿过程
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
贵州省有色金属和核工业地质勘查局, 贵州, 贵阳, 550005
3.
河北省地矿局第五地质大队, 063000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
国家自然科学基金委2011年面上基金项目
|
文献收藏号
|
CSCD:5422706
|
参考文献 共
35
共2页
|
1.
刘平. 黔中—川南石炭纪铝土矿的地球化学特征.
中国区域地质,1999,18(2):210-217
|
CSCD被引
18
次
|
|
|
|
2.
刘平. 八论贵州之铝土矿-黔中-渝南铝土矿成矿背景及成因探讨.
贵州地质,2001,18(4):238-243
|
CSCD被引
51
次
|
|
|
|
3.
金中国. 贵州务川瓦厂坪铝土矿床地质特征.
矿产与地质,2009,23(2):127-141
|
CSCD被引
2
次
|
|
|
|
4.
金中国. 贵州务川瓦厂坪铝土矿床地球化学特征.
矿物学报,2009,29(4):458-462
|
CSCD被引
26
次
|
|
|
|
5.
殷科华. 黔北务-正-道铝土矿的成矿作用及成矿模式.
沉积学报,2009,27(3):253-257
|
CSCD被引
2
次
|
|
|
|
6.
吕天权. 黔北务正道铝土矿找矿标志及找矿模式.
贵州地质,2009,26(4):260-264
|
CSCD被引
4
次
|
|
|
|
7.
刘幼平. 黔北地区铝土矿成矿特征与成矿因素研究.
矿物岩石地球化学通报,2010,29(4):422-425
|
CSCD被引
4
次
|
|
|
|
8.
谷静. 黔北务—正—道铝土矿床不活动元素地球化学与质量平衡计算.
矿物学报,2011,31(3):397-405
|
CSCD被引
4
次
|
|
|
|
9.
武国辉. 黔北务正道铝土矿成矿规律探讨.
地质与勘探,2008,44(6):31-35
|
CSCD被引
32
次
|
|
|
|
10.
刘平. 黔北务-正-道地区铝土矿地质概要.
地质与勘探,2007,43(5):29-33
|
CSCD被引
58
次
|
|
|
|
11.
Bardossy G. Karst bauxites, bauxite deposits on carbonate rocks.
Developments in Economic Geology,1982,14:1-441
|
CSCD被引
19
次
|
|
|
|
12.
Mutakyahwa M K D. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania.
Journal of African Earth Sciences,2003,36(4):357-369
|
CSCD被引
8
次
|
|
|
|
13.
Ji H B. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau: I. The formation of the Pingba profile.
Chemical Geology,2004,203(1/2):1-27
|
CSCD被引
71
次
|
|
|
|
14.
Maksimovic Z. Contribution to the geochemistry of the rare-earth elements in the karst-bauxite deposits of Yugoslavia and Greece.
Geoderma,1991,51(1/4):93-109
|
CSCD被引
16
次
|
|
|
|
15.
Karadag M M. Rare-earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya - Southern Turkey).
Chemie der Erde- Geochemistry,2009,69(2):143-159
|
CSCD被引
9
次
|
|
|
|
16.
Valeton I M B. Genesis of nickel laterites and bauxites in greece during the jurassic and cretaceous, and their relation to ultrabasic parent rocks.
Ore Geology Reviews,1987,2(4):359-404
|
CSCD被引
15
次
|
|
|
|
17.
MacLean W H. Argillite debris converted to bauxite during karst weathering evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia.
Mineralium Deposita,1997,32(6):607-616
|
CSCD被引
36
次
|
|
|
|
18.
Kuhnel R A. The role of cationic and anionicscavengers in laterites.
Chemical Geology,1987,60(1/4):31-40
|
CSCD被引
1
次
|
|
|
|
19.
Schwertmann U E M. Effect of pH on the formation of goethite and hematite from ferrihydrite.
Clays Clay Minerals,1983,31(4):277-284
|
CSCD被引
19
次
|
|
|
|
20.
Kevin H. Rare-earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions.
Earth and Planetary Science Letters,1996,139(1/2):305-319
|
CSCD被引
16
次
|
|
|
|
|