上扬子区古生界页岩的微观孔隙结构特征及其勘探启示
Characteristics of Microscopic Pore Structure in Paleozoic Shales in Upper Yangtze Region and Its Enlightenment for Shale Gas Exploration
查看参考文献28篇
文摘
|
页岩的微观孔隙是评价页岩气资源潜力以及是否具有开采价值的重要指标。对上扬子区遵义、通江、广元等地下寒武统牛蹄塘组、下志留统龙马溪组和上二叠统大隆组的页岩进行采样,运用扫描电镜、氮气吸附和压汞实验对这些页岩的孔隙结构特征及其影响因素进行了研究。结果表明,大隆组页岩具有很低的比表面积和孔隙度,其中孔径小于100 nm的孔对孔隙度的贡献率在10%左右,主要孔隙类型为草莓体黄铁矿晶间孔;龙马溪组和牛蹄塘组页岩则具有较高的比表面积和孔隙度,50%~80%以上的孔隙度来自小于100 nm孔的贡献,主要孔隙类型是干酪根孔隙和溶蚀孔隙。认为页岩微观孔隙的发育与页岩的类型、溶蚀作用以及成熟度等因素有关。 |
其他语种文摘
|
Microscopic pore structur es of shale are important to evaluating shale gas potential and exploitation value. Scanning electron microscopy(SEM), nitrogen sorption and mercury intrusion experiments were carried out to study microscopic pore structures and the controlling factors of Paleozoic shales in Upper Yangtze region, including Zunyi in Guizhou province and Tongjiang and Guanyuan in Sichuan province. The results show that the Upper Permian Dalong shale has low values of specific surface area and porosity, in which 10% of porosity is contributed by the pores below 100nm, and the framboid pyrite intercrystal pore is common in pore type. The Lower Silurian Longmaxi and Lower Cambrian Niutitang shales have higher specific surface and porosity than Dalong shale, in which 50%-80% of porosity is contributed by the pores less than 100nm, and kerogen pores and dissolution pores are dominant in pore type meanwhile a small amount of honeycomb pores, dissolution impressions and microfractures as well. It is demonstrated that microscopic pore structures are determined by type, dissolution and maturity of shale. |
来源
|
海相油气地质
,2015,20(1):71-78 【扩展库】
|
DOI
|
10.3969/j.issn.1672-9854.2015.01.009
|
关键词
|
上扬子区
;
古生界
;
页岩气
;
孔隙结构
;
孔隙度
|
地址
|
1.
中国科学院广州地球化学研究所, 中国科学院有机地球化学国家重点实验室
2.
中国科学院广州地球化学研究所
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9854 |
学科
|
石油、天然气工业 |
基金
|
国家自然科学基金
;
国家油气重大专项
;
国家973项目04课题“深层页岩气储集物性及含气性研”
|
文献收藏号
|
CSCD:5415097
|
参考文献 共
28
共2页
|
1.
杨峰. 高压压汞法和氮气吸附法分析页岩孔隙结构.
天然气地球科学,2013,24(3):450-455
|
CSCD被引
122
次
|
|
|
|
2.
吴勘. 鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义.
地球科学中国地质大学学报,2012,37(2):175-183
|
CSCD被引
14
次
|
|
|
|
3.
Loucks R G. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississppian Barnett shale.
Journal of Sedimentary Research,2009,79(12):848-861
|
CSCD被引
730
次
|
|
|
|
4.
Chalmers G R L. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity.
Bulletin of Canadian Petroleum Geology,2008,56(1):1-21
|
CSCD被引
158
次
|
|
|
|
5.
Chalmers G R L. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada.
International Journal of Coal Geology,2007,70(1):223-239
|
CSCD被引
129
次
|
|
|
|
6.
Ross D J K. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada.
Bulletin of Canadian Petroleum Geology,2007,55(1):51-75
|
CSCD被引
207
次
|
|
|
|
7.
Jarvie D M. Unconventional shalegas system: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment.
AAPG Bulletin,2007,91(4):475-499
|
CSCD被引
923
次
|
|
|
|
8.
Curtis M E.
Investigation of the relationship between organic porosity and thermal maturity in the Marcellus shale. SPE-144370-MS 144370,2011
|
CSCD被引
1
次
|
|
|
|
9.
Loucks R G. Spectrum of pore types and networks in mudrocks and descriptive classification for matrix-related mudrock pores.
AAPG Bulletin,2012,96(6):1071-1098
|
CSCD被引
626
次
|
|
|
|
10.
Desbois G. Morphology of the pore space in claystones-Evidence from BIB/FIB ion beam sectioning and cryo-SEM observations.
Earth,2009,4(1):15-22
|
CSCD被引
20
次
|
|
|
|
11.
Curtis M E. Development of organic porosity in the Woodford Shale with increasing thermal maturity.
International Journal of Coal Geology,2012,103(10):26-31
|
CSCD被引
248
次
|
|
|
|
12.
Cao Taotao. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin.
Marine and Petroleum Geology,2015,61:140-150
|
CSCD被引
41
次
|
|
|
|
13.
Cao Taotao.
A comparative study of the specific surface area and pore structure of different shales and their kerogens,2015
|
CSCD被引
1
次
|
|
|
|
14.
Slatt R M. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks.
AAPG Annual Convention and Exhibition,2011
|
CSCD被引
3
次
|
|
|
|
15.
Tiwari P. Characterization of oil shale pore structure before and after pyrolysis by using X-ray CT.
Fuel,2013,107:547-554
|
CSCD被引
39
次
|
|
|
|
16.
白振瑞.
遵义-綦江地区下寒武统牛蹄塘组页岩沉积特征及页岩气评价参数,2012:77-85
|
CSCD被引
1
次
|
|
|
|
17.
赵振宇. 泥岩非构造裂缝与现代水下收缩裂缝相似性研究.
西安石油大学学报:自然科学版,2008,23(3):6-12
|
CSCD被引
15
次
|
|
|
|
18.
Elgmati M.
Submicro-pore characterization of shale gas plays. SPE 144050,2011
|
CSCD被引
2
次
|
|
|
|
19.
白玉润. 松辽盆地扶余-新立地区扶余油层的溶蚀孔隙.
石油与天然气地质,1988,9(2):163-170
|
CSCD被引
2
次
|
|
|
|
20.
Kuila U.
Compositional controls on mudrock pore-sizedistribution: An example from Nibrara Formation. SPE 160141,2012
|
CSCD被引
1
次
|
|
|
|
|