城市热环境季相变异及与非渗透地表的定量关系分析--以广州市中心区为例
Seasonal Variations of Urban Heat Environment and Its Relationship to Impervious Surface:A Case Study of Guangzhou Core Urban Area
查看参考文献26篇
文摘
|
基于遥感卫星影像的热环境时空格局及与地表特征相关性分析是目前城市热环境研究的主要内容,但此类研究针对季相变异特征的分析较为缺乏。以广州市中心区2005年下半年3期不同季相的Landsat TM影像为数据源,提出一种面向对象分割的方法提取城市热岛/冷岛分布,并利用重心模型定量其季相变化移动轨迹;采用回归树模型构建地表温度(Land surface temperature, LST)与非渗透地表的关系方程,旨在揭示城市热环境季相变异性规律。结果表明:(1)随夏季到深秋,热岛呈现从中心区退出的态势,南部冷岛大面积消失,7月18日至10月22日热岛重心向东移动2.5 km,冷岛重心向西北移动3.4 km。10月22日至11月23日冷岛重心向西北移动9 km,热岛重心向东南移动8 km;(2)随季相变化,地表温度与非渗透地表的正相关关系趋于复杂,二者相关性从7月18日的0.9941降至11月23日的0.8691,对于11月23日数据,使用二次多项式方程更能表达二者的关系;(3)与传统的线性回归模型相比,回归树模型能更好地模拟地表温度的空间异质性,非渗透地表的增温作用存在非线性趋势,并且二者的关系模型存在明显的空间异质性。 |
其他语种文摘
|
Pattern analysis of urban heat environment and modeling its driving factors are the two aspects in studies with the use of remote sensing images (e.g. Thermal band in Landsat TM). However, impacts of remote sensing images seasonal selection on urban heat environment analysis remain a challenge for researchers. We took Guangzhou city as a study area, and attempted to characterize the behaviors of urban thermal pattern and variations of relationship between LST and impervious surfaces over three thermal images from Landsat TM5 in 2005. We proposed an Object-oriented segmentation method to extract hot/cool islands and characterized their seasonal variations pattern with centroid method. Additionally, we modeled the LST-impervious surfaces relationship with regression tree. We found that:(1) From July 18 to November 23, hot islands tend to disappear from the urban core area and cool islands tend to disappear from the southern of Guangzhou. Centroid of hot islands shifts to eastern with 2.5km while centroid of cool islands shifts to north-western with 3.4 km form July 18 to October 22. And Centroid of cool islands shifts to north-western with 9 km while centroid of hot islands shifts to south-eastern with 8km form October 22 to November 23. (2) Pearson’s relationship between LST and impervious surfaces decrease from 0.994 1 in July 18 to 0.869 1 in November 23. Quadratic polynomial model shows better performances in November 23. (3) Compared to traditional linear regression, regression tree model is able to estimate more heterogeneity of LST. Results of regression tree indicates the impacts of impervious surface on LST is nonlinear and their distribution of equation are of spatial heterogeneity. |
来源
|
生态环境学报
,2015,24(2):270-277 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2015.02.014
|
关键词
|
非渗透地表
;
季相变异
;
热环境
;
广州市中心区
|
地址
|
1.
中国科学院广州地球化学研究所, 广东省农业环境综合治理重点实验室, 广东, 广州, 510640
2.
广州大学地理科学学院, 广东, 广州, 510006
3.
广东省生态环境与土壤研究所, 广东省农业环境综合治理重点实验室, 广东, 广州, 510650
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金项目
;
广州市属高校"羊城学者"科研项目
|
文献收藏号
|
CSCD:5396730
|
参考文献 共
26
共2页
|
1.
Anselin L. Local indicators of spatial association-LISA.
Geographical analysis,1995,27(2):93-115
|
CSCD被引
962
次
|
|
|
|
2.
Anselin L. GeoDa: an introduction to spatial data analysis.
Geographical analysis,2006,38(1):5-22
|
CSCD被引
114
次
|
|
|
|
3.
Blaschke T. Object-based contextual image classification built on image segmentation.
Advances in Techniques for Analysis of Remotely Sensed Data, 2003 IEEE Workshop on, IEEE,2003:113-119
|
CSCD被引
1
次
|
|
|
|
4.
Blaschke T. Object based image analysis for remote sensing.
ISPRS journal of photogrammetry and remote sensing,2010,65(1):2-16
|
CSCD被引
211
次
|
|
|
|
5.
Blaschke T. Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications.
Environmental information for planning, politics and the public,2000,2:555-570
|
CSCD被引
8
次
|
|
|
|
6.
Buyantuyev A. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns.
Landscape Ecology,2010,25(1):17-33
|
CSCD被引
51
次
|
|
|
|
7.
Camilloni I. Temporal variability of the Buenos Aires, Argentina, urban heat island.
Theoretical and Applied Climatology,2012,107(1/2):47-58
|
CSCD被引
3
次
|
|
|
|
8.
Gallo K P. Satellite-based adjustments for the urban heat island temperature bias.
Journal of Applied Meteorology,1999,38(6):806-813
|
CSCD被引
18
次
|
|
|
|
9.
Guo G H. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters.
Landscape and Urban Planning,2015,135:1-10
|
CSCD被引
17
次
|
|
|
|
10.
Li J X. Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China.
Remote Sensing of Environment,2011,115(12):3249-3263
|
CSCD被引
47
次
|
|
|
|
11.
Liu H. Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA.
Environmental monitoring and assessment,2008,144(1/3):199-219
|
CSCD被引
13
次
|
|
|
|
12.
Qin Z H. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region.
International Journal of Remote Sensing,2001,22(18):3719-3746
|
CSCD被引
106
次
|
|
|
|
13.
Qin Z H. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data.
Journal of Geophysical Research: Atmospheres (1984-2012),2001,106(D19):22655-22670
|
CSCD被引
38
次
|
|
|
|
14.
Walton J T. Subpixel Urban Land Cover Estimation: Comparing Cubist, Random Forests, and Support Vector Regression.
Photogrammetric Engineering & Remote Sensing,2008,74(10):1213-1222
|
CSCD被引
7
次
|
|
|
|
15.
Weng Q H. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data.
Remote Sensing of Environment,2014,140:267-278
|
CSCD被引
4
次
|
|
|
|
16.
Wylie B K. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains.
Remote Sensing of Environment,2007,106(4):399-413
|
CSCD被引
5
次
|
|
|
|
17.
Xiao R B. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China.
Journal of Environmental Sciences,2007,19(2):250-256
|
CSCD被引
30
次
|
|
|
|
18.
Yang Z S. Exploring spatial evolution of economic clusters: A case study of Beijing.
International Journal of Applied Earth Observation and Geoinformation,2012,19:252-265
|
CSCD被引
5
次
|
|
|
|
19.
Zhou W Q. Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures.
Landscape Ecology,2014,29(1):153-167
|
CSCD被引
20
次
|
|
|
|
20.
段翰晨. 科尔沁沙地沙漠化时空演变及其景观格局——以内蒙古自治区奈曼旗为例.
地理学报,2012,67(7):917-928
|
CSCD被引
46
次
|
|
|
|
|