储层介质环境对原油裂解生气影响的实验研究
Experimental study on the effects of reservoir mediums on crude oil cracking to gas
查看参考文献38篇
文摘
|
采用封闭黄金管高压釜体系,在恒温(365 ℃)、恒压(50 MPa)条件下模拟不同储层介质环境下原油的裂解生气过程。实验结果表明:(1)在模拟实验条件下,水、矿物基质对原油裂解具有促进作用,使得气体产率有所提高,其中气态烃产率大约提高1倍,H_2、CO_2产率也有所提高;(2)硫酸镁溶液的存在可导致原油热解体系发生明显的硫酸盐热化学还原反应(TSR),产生大量H_2S气体,同时烃类气体产率也有大幅提高,气体干燥系数明显增大;气体碳同位素数据表明TSR反应使甲烷、乙烷、丙烷相对富集~(13)C; (3)一定量氯化钠溶液的存在会促进TSR反应,使得气态烃与非烃产率明显提高,同时造成烃类气体碳同位素组成的偏重(富集~(13)C),乙烷的增重尤其明显,最大变化可达4‰。因此,储层介质环境对原油裂解具有显著的影响,在利用气体化学和同位素组成对原油裂解气进行研究时需要考虑储层介质环境可能存在的影响。 |
其他语种文摘
|
The cracking of crude oil in different medium conditions was simulated by using a confined gold tube-autoclave system and a heating method of constant temperature (365 ℃) and constant pressure (50 MPa). The experiment results show that: (1) Water and minerals can promote the cracking of crude oil and lead to obvious increase of gas yields, in which gaseous hydrocarbon yield increases about 2 times and the yields of H_2 and CO_2 also increase to some extent. (2) The adding of magnesium sulfate solution can trigger the thermochemical sulfate reduction (TSR) in this reaction system and lead to significant increase in the yields of hydrocarbon gases and non-hydrocarbon gas, such as H_2S. At the same time, TSR makes hydrocarbon gas become dryer and enriched in ~(13)C. (3) sodium chloride solution can promote the TSR, which leads to the yield increase of hydrocarbon gas and non-hydrocarbon gas and the ~(13)C-enrichment of gaseous hydrocarbons, especially for ethane, its δ~(13)C variationreaching up to 4‰. Therefore, the influences of reservoir mediums should be taken into consideration when chemical and carbon isotopic compositions of gases were used into gas-source rock correlation. |
来源
|
地球化学
,2015,44(2):178-188 【核心库】
|
关键词
|
原油裂解生气
;
热模拟实验
;
储层介质环境
;
TSR
|
地址
|
1.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
2.
中国石油勘探开发研究院, 北京, 100083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家重大科技专项
;
国土资源部中国地质调查局地质大调查项目
|
文献收藏号
|
CSCD:5392592
|
参考文献 共
38
共2页
|
1.
Behar F. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking.
Org Geochem,1992,19(1/3):173-189
|
CSCD被引
182
次
|
|
|
|
2.
Behar F. Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation.
Org Geochem,1997,26(5/6):321-339
|
CSCD被引
77
次
|
|
|
|
3.
Lewan M D. Laboratory simulation of petroleum formation: Hydrous pyrolysis.
Organic Geochemistry,1993:419-442
|
CSCD被引
9
次
|
|
|
|
4.
Ungerer P. Extrapolation of oil and gas formation kinetics from laboratory experiments to sedimentary basins.
Nature,1987,327(6117):52-54
|
CSCD被引
62
次
|
|
|
|
5.
Behar F. A Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions.
Org Geochem,2003,34(4):575-600
|
CSCD被引
20
次
|
|
|
|
6.
Liu J Z. One example of predicting methane generation yield by hydrocarbon generating kinetics.
Chinese Sci Bull,1998,43(11):1187-1191
|
CSCD被引
2
次
|
|
|
|
7.
Zhang H Z. Closed-system programmed-temperature pyrolysis on n-octadecane: Implications for the conversion of oil to gas.
Geochem J,2008,42(5):403-412
|
CSCD被引
3
次
|
|
|
|
8.
Horsfield B. Closed-system pro-grammed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir.
Org Geochem,1992,19(1/3):191-204
|
CSCD被引
56
次
|
|
|
|
9.
Schenk H J. The conversion of oil into gas in petroleum reservoirs. Part I: Comparative kinetic investiga-tion of gas generation from crude oils of lacustrine, marine and flu-viodeltaic origin by programmed-temperature closed-system pyro-lysis.
Org Geochem,1997,26(7/8):467-481
|
CSCD被引
82
次
|
|
|
|
10.
Waples D W. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics.
Org Geochem,2000,31(6):553-575
|
CSCD被引
99
次
|
|
|
|
11.
帅燕华. 地层水促进原油裂解成气的模拟实验证据.
科学通报,2012,57(30):2857-2863
|
CSCD被引
9
次
|
|
|
|
12.
张水昌. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制.
岩石学报,2011,27(3):809-826
|
CSCD被引
53
次
|
|
|
|
13.
Lewan M. Experiments on the role of water in petroleum formation.
Geochim Cosmochim Acta,1997,61(17):3691-3723
|
CSCD被引
116
次
|
|
|
|
14.
Lewan M D. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation.
Org Geochem,2011,42(1):31-41
|
CSCD被引
32
次
|
|
|
|
15.
肖七林. 储层介质环境对深埋油藏原油热裂解影响的初步实验研究.
科学通报,2010,55(29):2844-2851
|
CSCD被引
4
次
|
|
|
|
16.
赵孟军. 塔里木发现和证实两种裂解气.
天然气工业,2001,21(1):35-38
|
CSCD被引
56
次
|
|
|
|
17.
姜兰兰. 矿物对原油裂解影响的实验研究.
地球化学,2009,38(2):165-173
|
CSCD被引
21
次
|
|
|
|
18.
赵文智. 不同赋存状态油裂解条件及油裂解型气源灶的正演和反演研究.
中国地质,2006,33(5):952-965
|
CSCD被引
14
次
|
|
|
|
19.
赵文智. 不同地质环境下原油裂解生气条件.
中国科学(D辑),2007,37(suppl 2):63-68
|
CSCD被引
21
次
|
|
|
|
20.
冯子辉. 原油在储层介质中的加水裂解生气模拟实验.
沉积学报,2002,20(3):505-510
|
CSCD被引
13
次
|
|
|
|
|