Mg?Zn?Y 合金中W′相与W 相的相变研究
Study on the transformation between W′ and W phases in Mg?Zn?Y alloy
查看参考文献12篇
文摘
|
Mg?Zn?Y合金中面心立方结构的W′和W相均与二十面体准晶(IQC)相有密切联系,但W′相的结构还存在争议。综合利用电子衍射分析、能谱分析和像差校正扫描透射电子显微术,确定W′相的化学成分为 Zn_(60.1) Mg_(23.9)Y_(16),具有Cd_(45)Sm_(11)型结构,内部存在四面体对称的Friauf多面体原子团簇而非二十面体对称团簇,因此 W′相不宜称为IQC相的近似相。利用原位加热透射电子显微术研究发现W′相在683 K可转变为W相。二者具有立方-立方取向关系,且W′/ W界面具有良好的外延性。热激活作用下原子的扩散和平移引起W相在W′上外延形核长大。 |
其他语种文摘
|
Both face?centered cubic phases W′ and W have close relationship with the icosahedral quasicrystal (IQC) phase in Mg?Zn? Y alloys, but the crystal structure of W′ phase remains controversial. Based on electron diffraction analysis, energy dispersive X?ray spectroscopy and aberration?corrected scanning transmission electron microscopy (STEM), it can be concluded that the W′ phase has a composition of Zn_(60.1) Mg_(23.9)Y_(16) and which is identified as the Cd_(45) Sm_(11)?type structure. The W′ phase is composed of tetrahedral symmetric Friauf polyhedral clusters rather than icosahedral symmetric multiple?shell ones, so the W′ phase is not an approximant crystal of IQC. By in situ heating transmission electron microscopy (TEM), a phase transformation from W′ to W was observed at 683 K in the as?cast alloy. The W′ and W phases have a cube?to?cube orientation relationship, and the W′/ W interface is coherent. Close correlation between their basic structural units, cuboctahedral and Friauf clusters, is believed to be responsible for the epitaxial nucleation and growth of W phase on the W′ phase. |
来源
|
电子显微学报
,2015,34(1):1-6 【核心库】
|
关键词
|
镁合金
;
二十面体准晶
;
原位透射电子显微学
;
像差校正扫描透射电子显微学
;
相变
|
地址
|
中国科学院金属研究所, 沈阳材料科学国家(联合)实验室, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6281 |
学科
|
晶体学;金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5360393
|
参考文献 共
12
共1页
|
1.
Bae D H. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles.
Acta Mater,2002,50(9):2343-2356
|
CSCD被引
85
次
|
|
|
|
2.
Somekawa H. Superplastic behavior in Mg-Zn-Y alloy with dispersed quasicrystal phase particles.
Adv Eng Mater,2009,11(10):782-787
|
CSCD被引
8
次
|
|
|
|
3.
Singh A. Effect of microstructure on strength and ductility of high strength quasicrystal phase dispersed Mg-Zn-Y alloys.
Mater Sci Eng A,2014,611:242-251
|
CSCD被引
8
次
|
|
|
|
4.
Luo Z P. Quasi-crystals in as-cast Mg-Zn-RE alloys.
Scripta Metall Mater,1993,28(12):1513-1518
|
CSCD被引
65
次
|
|
|
|
5.
Luo Z P. On the stable Mg-Zn-Y quasicrystals.
Metall Mater Trans A,1996,27(7):1779-1784
|
CSCD被引
7
次
|
|
|
|
6.
Liu J F. In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg-Zn-Y alloys.
J Alloys Comp,2015,621:179-188
|
CSCD被引
17
次
|
|
|
|
7.
Luo Z P. High-resolution electron microscopy observation of a new crystalline approximant W' of Mg-Zn-Y icosahedral quasicrystal.
Micron,2000,31(5):487-492
|
CSCD被引
8
次
|
|
|
|
8.
Abe E. Structure of a cubic phase related to Cd-Mg-rare-earth quasicrystals.
Philos Mag Lett,2001,81(8):563-568
|
CSCD被引
1
次
|
|
|
|
9.
Singh A. On the cubic W phase and its relationship to the icosahedral phase in Mg-Zn-Y alloys.
Scripta Mater,2003,49(2):143-148
|
CSCD被引
24
次
|
|
|
|
10.
Sterzel R. A cubic approximant in the Zn-Mg-Er alloy.
Philos Mag Lett,2000,80(4):239-247
|
CSCD被引
1
次
|
|
|
|
11.
Komura Y. Structural studies of stacking variants in Mg-base friauf-laves phases.
Acta Crystallogr B,1980,36(7):1548-1554
|
CSCD被引
19
次
|
|
|
|
12.
Li M R. Intermetallic phases and phase reactions in Zn-Mg (< 40 at. %)-Y (< 20 at. %) region.
J Alloys Comp,2007,432(1/2):81-89
|
CSCD被引
3
次
|
|
|
|
|