一种基于AUSM思想的通量分裂方法
A Flux Splitting Scheme Based on AUSM
查看参考文献38篇
文摘
|
根据对流迎风分裂(AUSM)思想提出一种通量分裂方法,称为K-CUSP格式。它与传统H-CUSP和E-CUSP格式的最大差异在于总能量的分裂:K-CUSP格式将无粘守恒通量中所有的运动学量分裂到对流项,所有的热力学量分裂到压力项,即总能量被分裂成动能和静焓。对于压力项的数值通量,采用一种新的界面构造方法。数值测试表明:①K-CUSP格式继承了FVS格式的简单性和稳健性。在激波后不易出现压力过冲,在膨胀区域没有振荡,优于AUSM和WPS格式;②K-CUSP格式继承了FDS格式的分辨率。激波间断的分辨率和H-CUSP、E-CUSP格式基本相同,接触间断的分辨率高于FVS格式,低于Roe、AUSM和WPS格式。 AUSM和WPS格式在计算运动接触间断时,速度存在很大振荡,而新格式不存在振荡。 |
其他语种文摘
|
According to advection upstream splitting method, a flux splitting method called K-CUSP is proposed. The greatest difference between K-CUSP and two traditional CUSP schemes, namely H-CUSP and E-CUSP, is splitting of total energy: All kinematic quantities and thermodynamic quantities should be separately split into convective term and pressure term by K-CUSP scheme. Numerical tests indicate that:① K-CUSP scheme inherits the simplicity and robustness of FVS scheme. It is less prone to pressure overshoot after shock and no oscillations in expansion area, which is better than AUSM and WPS schemes. ② K-CUSP scheme also inherits resolution of FDS scheme. Shock resolution is almost the same with H-CUSP and E-CUSP schemes. Contact discontinuity resolution is better than FVS schemes, a little worse than Roe, AUSM and WPS schemes. However, velocity of contact discontinuity in AUSM and WPS schemes exist large oscillation, while our scheme does not. |
来源
|
计算物理
,2015,32(1):1-12 【核心库】
|
关键词
|
通量分裂
;
混合迎风格式
;
AUSM格式
;
CUSP格式
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-246X |
学科
|
力学 |
文献收藏号
|
CSCD:5359626
|
参考文献 共
38
共2页
|
1.
Steger J L. Flux vector splitting of the inviscid gas dynamics equations with application to finite difference schemes.
Journal of Computational Physics,1981,40(2):263-293
|
CSCD被引
103
次
|
|
|
|
2.
Van Leer B. Flux vector splitting for Euler equations.
Eighth International Conference on Numerical Methods in Fluid Dynamics,1982:170
|
CSCD被引
1
次
|
|
|
|
3.
Hanel D.
On the accuracy of upwind schemes for the solution of the Navier-Stokes equations. AIAA-1987-1105
|
CSCD被引
1
次
|
|
|
|
4.
Hanel D.
An implicit flux-vector splitting scheme for the computation of viscous hypersonic flow. AIAA-1989-0274
|
CSCD被引
1
次
|
|
|
|
5.
Coirier W J.
Numerical flux formulas for the Euler and Navier-Stokes equations:II. Progress in flux-vector splitting. AIAA-1991-1566
|
CSCD被引
1
次
|
|
|
|
6.
Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes.
Journal of Computational Physics,1981,43:357-372
|
CSCD被引
419
次
|
|
|
|
7.
Osher S. Upwind difference schemes for hyperbolic conservation laws.
Mathematical computations,1982,158:339-374
|
CSCD被引
2
次
|
|
|
|
8.
Toro E F. Restoration of the contact surface in the HLL-Riemann solver.
Shock Waves,1994,4:25-34
|
CSCD被引
98
次
|
|
|
|
9.
Peery K M.
Blunt-body flow simulations. AIAA-1988-2904
|
CSCD被引
1
次
|
|
|
|
10.
Quirk J J.
A contribution to the great Riemann solver debate. ICASE Report, 1992-64
|
CSCD被引
1
次
|
|
|
|
11.
Liou M S. A new flux splitting scheme.
Journal of Computational Physics,1993,107:23-39
|
CSCD被引
90
次
|
|
|
|
12.
Wada Y.
An accurate and robust splitting scheme for shock and contact discontinuities. AIAA-1994-0083
|
CSCD被引
1
次
|
|
|
|
13.
Liou M S.
Progress towards an improved CFD methods:AUSM+. AIAA-1995-1701
|
CSCD被引
1
次
|
|
|
|
14.
Liou M S. A Sequel to AUSM:AUSM+.
Journal of Computational Physics,1996,129:364-382
|
CSCD被引
79
次
|
|
|
|
15.
Liou M S.
Ten years in the making-AUSM-family. AIAA-2001-2521
|
CSCD被引
1
次
|
|
|
|
16.
Liou M S. A sequel to AUSM, Part II:AUSM+-up for all speeds.
Journal of Computational Physics,2006,214:137-170
|
CSCD被引
67
次
|
|
|
|
17.
Kim K H. An improvement of AUSM schemes by introducing the pressure-based weight functions.
Computers and Fluids,1998,27(3):311-346
|
CSCD被引
19
次
|
|
|
|
18.
Kim K H.
Accurate computations of hypersonic flows using AUSMPW+ scheme and shock-aligned grid technique. AIAA-1998-2442
|
CSCD被引
1
次
|
|
|
|
19.
Kim K H. Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme.
Journal of Computational Physics,2001,174(1):38-80
|
CSCD被引
78
次
|
|
|
|
20.
Jameson A. Analysis and design of numerical schemes for gas dynamics I:Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flow.
International Journal of Computational Fluid Dynamics,1995,4:171-218
|
CSCD被引
9
次
|
|
|
|
|