短时微重力下气泡尾流效应的动力学特性研究
Dynamics Study on Bubble Wake Effect under Short Period of Microgravity
查看参考文献11篇
文摘
|
实验研究了微重力环境中,不同热流密度时尾流效应对气泡动力学过程的影响。结果表明,微重力下气泡的尾流效应比常重力时更加明显,低热流密度时尾流对气泡动力学行为影响微弱,中高热流密度时尾流影响效果显著。尾流区内液体的水平流动促进了原生气泡间相互碰撞、合并过程,垂直加热面的流动则给气泡施加了向上的曳力,从而降低了气泡生长周期和脱离半径。尾流区内过冷液体的冷却作用使气泡内形成负压,液体从微柱结构内被吸入气泡底部,为其长大提供新鲜液体,避免局部干斑。尾流效应与微柱结构相互作用,能有效促进加热面的气泡合并和脱离过程,提高表面换热能力。 |
其他语种文摘
|
The influences of wake on bubble dynamics under various heat fluxes have been studied experimentally in microgravity. Results indicate that wake has little influence on bubble dynamics at low heat fluxes, but its effect on bubble dynamics is very greater at middle or high heat fluxes. More important, the bubble wake effect appears even more significant in microgravity. In the wake field, the horizontal flow of the liquid on micro-pin-finned silicon chips promotes the collision, coalescence and movement of bubbles, and the vertical flow of liquid phase can exert an upward force on bubbles, which can effectively shorten the growth cycle and decrease the departure radius of bubbles. Furthermore, subcooled liquid in wake field can create a negative pressure zone in bubbles and the fresh liquid can easily be inhaled into the micro-pin-finned structure covered by bubbles, which can supply sufficient liquid for the growth of bubble, avoiding film boiling. The interaction between the micro-pin-finned structure and the wake effect can promote the process of bubble coalescence and departure effectively, and then enhance heat transfer of micro-pin-finned surface. |
来源
|
工程热物理学报
,2015,36(1):184-188 【核心库】
|
关键词
|
尾流效应
;
池沸腾
;
微重力
;
动力学
;
微柱阵列结构
|
地址
|
1.
西安交通大学, 动力工程多相流国家重点实验室, 西安, 710049
2.
中国科学院力学研究所, 微重力重点实验室(国家微重力实验室), 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-231X |
学科
|
能源与动力工程 |
基金
|
中国科学院国家微重力重点实验室落塔资助项目
;
国家教育部高等学校博士学科点专项科研基金
;
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:5337086
|
参考文献 共
11
共1页
|
1.
Straub Johannes. Boiling Heat Transfer and Bubble Dynamics in Microgravity.
Advances in Heat Transfer,2001,35:57-172
|
CSCD被引
14
次
|
|
|
|
2.
Di Marco Paolo. Effects of External Electric Field on Pool Boiling: Comparison of Terrestrial and Microgravity Data in the ARIEL Experiment.
Experimental Thermal and Fluid Science,2011,35(5):780-787
|
CSCD被引
6
次
|
|
|
|
3.
Chang J Y. Heat Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72.
ASME Journal of Heat Transfer,1996,118:937-943
|
CSCD被引
5
次
|
|
|
|
4.
Chang J Y. Enhanced Boiling Heat Transfer From MicroPorous Surfaces: Effects of a Coating Composition and Method.
International Journal of Heat and Mass Transfer,1997,40:4449-4460
|
CSCD被引
7
次
|
|
|
|
5.
Wei Jinjia. Experimental Study of Boiling Phenomena and Heat Transfer Performances of FC-72 Over Micro-Pin-Finned Silicon Chips.
Heat Mass Transfer,2005,41(8):744-755
|
CSCD被引
11
次
|
|
|
|
6.
Wei Jinjia. Effects of Fin Geometry on Boiling Heat Transfer From Silicon Chips with Micro-Pin-fins Immersed in FC-72.
International Journal of Heat and Mass Transfer,2003,46:4059-4070
|
CSCD被引
20
次
|
|
|
|
7.
Ma Aixiang. Enhanced Flow Boiling Heat Transfer of FC-72 on Micro-Pin-Finned Surfaces.
International Journal of Heat and Mass Transfer,2009,52:2925-2931
|
CSCD被引
8
次
|
|
|
|
8.
Wei Jinjia. Boiling Heat Transfer Enhancement by Using Micro-Pin-Finned Surface for Electronics Cooling.
Microgravity Science and Technology,2009,21:S159-S173
|
CSCD被引
7
次
|
|
|
|
9.
薛艳芳. 微重力下光滑表面上FC-72的池沸腾实验研究.
工程热物理学报,2011,32(3):423-426
|
CSCD被引
5
次
|
|
|
|
10.
Xue Yanfang. Experimental Study of Nucleate Pool Boiling of FC-72 on Smooth Surface under Microgravity.
Microgravity Science Technology,2011,23:S75-S85
|
CSCD被引
3
次
|
|
|
|
11.
Judd Ali A. An Analytical and Experimental Investigation of Bubble Waiting Time in Nucleate Boiling.
J Heat Transfer,1981,103:673-678
|
CSCD被引
1
次
|
|
|
|
|