大陆地壳熔融和酸性岩浆起源的热源问题
Heat source for continental crust melting and silicic magma generation
查看参考文献56篇
文摘
|
地壳的熔融受控于地壳的岩石成分、减压作用、外来水的加入和地壳内部的地温条件等众多因素,其中确定熔融所需热量的来源至关重要。本文简要回顾了板内环境下地壳熔融和酸性岩浆起源的相关研究,总结了引发地壳熔融热源的热源问题。目前一般认为地壳熔融是由底侵的高温幔源岩浆引发的,这种观点得到多学科资料的支持。不过底侵观点未能很好地解释大规模基性和酸性岩浆作用之间存在的显著不相关性和S型花岗岩的成因,相关数值模拟结果也高估了岩浆侵入所能引发的地壳熔融规模。本文提出岩石圈的不均一拉张和地表拉张裂谷内沉积物的快速加积可使地壳内部形成较高的地温梯度,进而造成以变沉积岩为主要成分的上地壳的大规模熔融和相关S型酸性岩浆作用的发生。 |
其他语种文摘
|
Crustal melting is dominated by the factors of rock type, water content and decompression melting. It requires a high geothermal gradient within the crust and its heat source is therefore the key to understanding the crustal anatexis and generation of silicic magma. This paper reviews studies on crustal melting and tries to summarize the proposed heat source that induces crustal anatexis. In most cases, heat has been believed to originate from the hot, mantle-derived mafic magma underplated into the crust or at the Mohorovic Discontinuity level. However, the underplating model, to some extent supported by certain evidence, has difficulty explaining the irrelevant occurrence between massive silicic and mafic magmatism and the fact that the genesis of S-type granite magma is closely related to melting of the upper crust. Moreover, extant results of underplating simulation overestimate the potential effect of basaltic magma intrusion on the crustal melting. A hypothesis is proposed as an alternative explanation of the large-scale crustal melting: the combined effects of the depth-dependent lithospheric extension and crustal thickness compensation of the rapidly-deposited sediments leads to an abnormally high geothermal gradient inside the crust, resulting in extensive melting of the upper crust consisting of meta-sedimentary rock and the generation of S-type silicic magma. |
来源
|
矿物学报
,2015,35(1):44-50 【核心库】
|
关键词
|
地壳熔融
;
板内环境
;
底侵作用
;
酸性岩浆起源
;
不均一拉张
;
沉积补偿
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地球物理学;地质学 |
基金
|
中国科学院地球化学研究所矿床地球化学国家重点实验室创新项目
|
文献收藏号
|
CSCD:5330861
|
参考文献 共
56
共3页
|
1.
Bryan S E. New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental province, Mexico, revealed by U-Pb geochronology.
Journal of Petrology,2008,49(1):47-77
|
CSCD被引
3
次
|
|
|
|
2.
Chesley J T. Crust-mantle interaction in large igneous provinces:Implications from the Re-Os isotope systematics of the Columbia River flood basalts.
Earth and Planetary Science Letters,1998,154(1/4):1-11
|
CSCD被引
7
次
|
|
|
|
3.
Lightfoot P C. Petrogenesis of rhyolites and trachytes from the Deccan Trap:Sr, Nd and Pb isotope and trace element evidence.
Contributions to Mineralogy and Petrology,1987,95(1):44-54
|
CSCD被引
33
次
|
|
|
|
4.
莫宣学. 青藏高原岩浆岩成因研究:成果与展望.
地质通报,2009,28(12):1693-1703
|
CSCD被引
26
次
|
|
|
|
5.
Douce A E P. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America.
Earth and Planetary Science Letters,1990,97(3/4):290-315
|
CSCD被引
43
次
|
|
|
|
6.
Stratford W. Crustal structure and composition of the Oslo Graben, Norway.
Earth and Planetary Science Letters,2011,304(3/4):431-442
|
CSCD被引
2
次
|
|
|
|
7.
Thompson A B. Some time-space relationships for crustal melting and granitic intrusion at various depths (Special Publications).
Geological Society,1999,168(1):7-25
|
CSCD被引
12
次
|
|
|
|
8.
Thompson A B. Melting of the continental crust:some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings.
Journal of Geophysical Research,1995,100(B8):15565-15579
|
CSCD被引
40
次
|
|
|
|
9.
Annen C. The genesis of intermediate and silicic magmas in deep crustal hot zones.
Journal of Petrology,2006,47(3):505-539
|
CSCD被引
104
次
|
|
|
|
10.
Dufek J. Lower crustal magma genesis and preservation:a stochastic framework for the evaluation of basalt-crust interaction.
Journal of Petrology,2005,46(11):2167-2195
|
CSCD被引
8
次
|
|
|
|
11.
Huppert H E. The generation of granitic magmas by intrusion of basalt into continental-crust.
Journal of Petrology,1988,29(3):599-624
|
CSCD被引
103
次
|
|
|
|
12.
Zhou X M. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution.
Episodes,2006,29(1):26-33
|
CSCD被引
624
次
|
|
|
|
13.
Xu Y G. Silicic magmas from the Emeishan large igneous province, Southwest China:Petrogenesis and their link with the end-Guadalupian biological crisis.
Lithos,2010,119(1/2):47-60
|
CSCD被引
44
次
|
|
|
|
14.
Zhong H. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province.
Geochimica Et Cosmochimica Acta,2011,75(5):1374-1395
|
CSCD被引
45
次
|
|
|
|
15.
Cleverly R W. Geochemistry and petrogenesis of the Lebombo rhyolites.
Geological Society of South Africa Special Publication,1984,13(1):171-195
|
CSCD被引
5
次
|
|
|
|
16.
Cox K G. Continental magmatic underplating.
Philosophical Transactions of the Royal Society of London Series A:Physical and Engineering Sciences,1993,342(1663):155-166
|
CSCD被引
7
次
|
|
|
|
17.
Miller J A. Petrogenesis of the Swaziland and northern Natal rhyolites of the Lebombo rifted volcanic margin, South East Africa.
Journal of Petrology,2007,48(1):185-218
|
CSCD被引
8
次
|
|
|
|
18.
Skjerlie K P. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to3.2 GPa; Implications for melting in thickened continental crust and for subduction-zone processes.
Journal of Petrology,2002,43(2):291-314
|
CSCD被引
68
次
|
|
|
|
19.
Sandiford M. Australian Proterozoic high-temperature, low-pressure metamorphism in the conductive limit.
Geological Society, London, Special Publications,1998,138(1):109-120
|
CSCD被引
1
次
|
|
|
|
20.
Thompson A B. Pressure-temperature-time paths of regional metamorphism II. their inference and interpretation using mineral assemblages in metamorphic rocks.
Journal of Petrology,1984,25(4):929-955
|
CSCD被引
42
次
|
|
|
|
|