Fracture toughness and fracture behavior of SA508-III steel at different temperatures
查看参考文献25篇
文摘
|
The fracture toughness of SA508-III steel was studied in the temperature range from room temperature to 320°C using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the conditional fracture toughness (J_Q) of the steel first decreased and then increased with increasing test temperature. The maximum and minimum values of J_Q were 517.4 kJ/m~2 at 25°C and 304.5 kJ/m~2 at 180°C, respectively. Dynamic strain aging (DSA) was also observed to occur when the temperature exceeded 260°C with a certain strain rate. Both the dislocation density and the number of small dislocation cells effectively increased because of the occurrence of DSA; as a consequence, crack propagation was more strongly inhibited in the steel. Simultaneously, an increasing number of fine carbides precipitated under high stress at temperatures greater than 260°C. Thus, the deformation resistance of the steel was improved and the J_Q was enhanced. |
来源
|
International Journal of Minerals
, Metallurgy and Materials,2014,21(12):1187-1195 【核心库】
|
DOI
|
10.1007/s12613-014-1026-2
|
关键词
|
low alloyed steel
;
fracture toughness
;
fracture behavior
;
temperature
;
dynamic strain aging
;
nuclear power plants
|
地址
|
Northeastern University, Key Laboratory for Anisotropy and Texture of Materials, MOE, Shenyang, 110819
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-4799 |
学科
|
金属学与金属工艺 |
基金
|
supported by the Major State Basic Research Development Program of China
;
国家自然科学基金
;
the Fundamental Research Fund for the Central Universities of China
|
文献收藏号
|
CSCD:5325197
|
参考文献 共
25
共2页
|
1.
Xu G. Study on the precipitation of Cu-rich clusters in the RPV model steel by APT.
Acta Metall. Sin,2012,48(4):407
|
CSCD被引
1
次
|
|
|
|
2.
Xu G. Effect of the precipitation of Cu-rich clusters on the DBTT of RPV simulated steel.
Acta Metall. Sin,2012,48(6):753
|
CSCD被引
1
次
|
|
|
|
3.
Lee S G. Strain rate effects on the fatigue crack growth of SA508 Cl.3 reactor pressure vessel steel in high-temperature water environment.
J. Pressure Vessel Technol,2001,123(2):173
|
CSCD被引
1
次
|
|
|
|
4.
Logsdon W A. Fatigue crack growth rate properties of SA508 and SA533 pressure vessel steels and submerged arc weldments in room and elevated temperature air environments.
Eng. Fract. Mech,1985,22(3):509
|
CSCD被引
1
次
|
|
|
|
5.
Xu S. Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel.
J. Mater. Sci,2009,44(11):2882
|
CSCD被引
14
次
|
|
|
|
6.
Kim J W. Local mechanical properties of alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320°C.
J. Nucl. Mater,2009,384(3):212
|
CSCD被引
7
次
|
|
|
|
7.
Thinnes G L. High-temperature creep and tensile data for pressure vessel steels SA533B1 and SA508-CL2.
Nucl. Eng. Des,1994,148(2/3):343
|
CSCD被引
8
次
|
|
|
|
8.
Wang L. Effect of temperature on mechanical behavior of GH690 alloy for nuclear plant.
Mater. China,2011,30(5):15
|
CSCD被引
1
次
|
|
|
|
9.
Huang J Y. Corrosion fatigue behavior of low alloy steels under simulated BWR coolant conditions.
J. Nucl. Mater,2010,405:17
|
CSCD被引
2
次
|
|
|
|
10.
Yeh J J. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments.
Mater. Chem. Phys,2007,104:125
|
CSCD被引
3
次
|
|
|
|
11.
Hong S G. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel.
J. Nucl. Mater,2005,340(3/4):307
|
CSCD被引
16
次
|
|
|
|
12.
Huang J Y. Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels.
J. Nucl. Mater,2004,324(2/3):140
|
CSCD被引
5
次
|
|
|
|
13.
Tanguy B. Comment on "Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel".
Scripta Mater,2003,49(2):191
|
CSCD被引
3
次
|
|
|
|
14.
Lee S. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel.
Acta Mater,2002,50(19):4755
|
CSCD被引
18
次
|
|
|
|
15.
Wang L.
Mechanical Properties of Materials,2007:77
|
CSCD被引
1
次
|
|
|
|
16.
Wang F Q. Fracture toughness and fracture behavior of GH690 alloy at different temperatures.
Chin. J. Mater. Res,2010,24(3):299
|
CSCD被引
1
次
|
|
|
|
17.
Wang B. Effect of cooling path on the hole-expansion property of medium carbon steel.
Acta Metall. Sin,2012,48(4):435
|
CSCD被引
1
次
|
|
|
|
18.
Glover G. Recovery and recrystallization during high temperature deformation of α-iron.
Metall. Trans,1973,4(3):765
|
CSCD被引
16
次
|
|
|
|
19.
Momeni A. Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel.
Mater. Sci. Eng. A,2010,527(6):1605
|
CSCD被引
28
次
|
|
|
|
20.
Sun M Y. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels.
J. Nucl. Mater,2011,418(1/3):269
|
CSCD被引
19
次
|
|
|
|
|