全内反射测速技术(TIRV)中界面隐失波基准光强I_0的确定
Determination of the interfacial evanescent wave base intensity I_0 in total internal reflection velocimetry (TIRV)
查看参考文献13篇
文摘
|
基于隐失波全内反射的测速技术TIRV (Total internal reflection velocimetry)是微纳流动中测量壁面附近几百纳米范围内速度的有效方法。隐失波的光强分布I(z)随离开壁面的高度z指数衰减。若荧光粒子位于光强分布中,其亮度也将符合此指数关系,通过测量粒子亮度可确定粒子的垂向位置z,而确定隐失波的基准光强I_0是该技术的关键之一。基于粒子近壁Boltzmann浓度分布、粒子粒径不均匀性和隐失波光强公式,给出了粒子亮度概率密度分布的数值解。实验测量粒子统计亮度分布后,依据实验和理论分布相同原则可定量确定基准光强I_0。采用φ100nm和φ250nm荧光粒子验证此方法并定量分析了粒径分散性对确定I_0的影响。进一步采用φ100nm粒子进行近壁速度测量实验,结果验证了本方法的有效性。 |
其他语种文摘
|
The total internal reflection velocimetry (TIRV) based on evanescent wave is an efficient method for velocity measurement within a few hundred nanometers to the wall. The evanescent wave intensity, I(z), decays exponentially with the distance z away from the wall. When a nanotracer located in this field is illuminated by evanescent wave, its radiation intensity will also obey the exponential decay low, and thus it is possible to determine the nanotracer’s z position by its illuminated intensity. Obviously, one of the key issues of this technology is to determine the base intensity I_0. In this paper, a numerical solution of the nanotracer intensity probability density function is given to predict the intensity distribution according to the exponential decay of the evanescent wave, the tracer concentration distribution and the tracer size variation. By comparing the measured intensity distribution with the theoretical prediction, the base intensity I_0 can be quantitatively determined. Fluorescent polystyrene spheres of φ100nm and φ250nm are used in the measurements. The validity of this method is verified. The effect of the nanotracer size variation on the determination of I_0 is also analyzed. Furthermore, φ100nm nanotracers are used to measure the velocity close to the wall, and the result verifies the validity of our method. |
来源
|
实验流体力学
,2014,28(6):80-85 【核心库】
|
DOI
|
10.11729/syltlx20140048
|
关键词
|
全内反射测速技术(TIRV)
;
隐失波
;
基准光强
;
纳米粒子
;
亮度分布
|
地址
|
1.
中国计量学院计量测试工程学院, 杭州, 310018
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9897 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5317907
|
参考文献 共
13
共1页
|
1.
Prieve D C. Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces.
Langmuir,1990,6(2):396-403
|
CSCD被引
2
次
|
|
|
|
2.
Kihm K D. Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM).
Experiments in Fluids,2004,37(6):811-824
|
CSCD被引
4
次
|
|
|
|
3.
Banerjee A. Experimental verification of near-wall hindered diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy.
Phys Rev E Stat Nonlin Soft Matter Phys,2005,72(4 Pt 1):42101
|
CSCD被引
4
次
|
|
|
|
4.
Huang P. Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry.
Journal of Fluid Mechanics,2006,566:447-464
|
CSCD被引
4
次
|
|
|
|
5.
Bouzigues C I. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces.
Phys Rev Letters,2008,101(11):114503
|
CSCD被引
6
次
|
|
|
|
6.
Yoda M. Dynamics of suspended colloidal particles near a wall: Implications for interfacial particle velocimetry.
Physics of Fluids,2011,23(11):111301
|
CSCD被引
2
次
|
|
|
|
7.
Chan C U. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics.
Phys Rev Letters,2012,109:174501
|
CSCD被引
13
次
|
|
|
|
8.
Hecht E.
Optics,1974
|
CSCD被引
10
次
|
|
|
|
9.
Kazoe Y. Measurements of the near-wall hindered diffusion of colloidal particles in the presence of an electric field.
Applied Physics Letters,2011,99(12):124104
|
CSCD被引
2
次
|
|
|
|
10.
Wang W. Measurement bias in evanescent wave nano-velocimetry due to tracer size variations.
Experiments in Fluids,2011,51(6):1685-1694
|
CSCD被引
1
次
|
|
|
|
11.
Choi C K. Examination of near-wall hindered Brownian diffusion of nanoparticles: Experimental comparison to theories by Brenner (1961) and Goldman et al (1967).
Physics of Fluids,2007,19(10):103305
|
CSCD被引
1
次
|
|
|
|
12.
Zheng X. The influence of nano-particle tracers on the slip length measurements by microPTV.
Acta Mechanica Sinica,2013,29(3):411-419
|
CSCD被引
6
次
|
|
|
|
13.
Zheng X. The influence of Saffman lift force on nanoparticle concentration distribution near a wall.
Applied Physics Letters,2009,95(12):124105-124105-3
|
CSCD被引
4
次
|
|
|
|
|