Molecular dynamics simulation of fracture behaviors of 〈110〉 tilt grain boundaries in γ-TiAl
γ-TiAl中〈110〉倾斜晶界断裂行为的分子动力学模拟
查看参考文献25篇
文摘
|
Molecular dynamics (MD) simulations were carried out to study the fracture behaviors of several symmetric tilt grain boundaries in γ-TiAl bicrystals with 〈110〉 misorientation axes. Tensile deformation along direction perpendicular to grain boundary was simulated under various strain rates and temperatures. The results indicate that the relative orientation of the grains and the presence of certain atom units are two critical factors of the interface structure affecting the stress required for dislocation nucleation. Dislocations nucleate and extend at or near the symmetric tilt grain boundaries during the tensile deformation of Σ3 (111) 109.5°, Σ9 (221) 141.1° and Σ27 (552) 148.4° interfaces. For Σ27 (115) 31.6° and Σ11 (113) 50.5° interfaces, the interfaces fractured directly in a cleavage manner due to no dislocation emitted from the boundary. The tensile fracture mechanisms of the bicrystals are that micro-cracks nucleate at the grain boundary and propagate along the interface. The variance of crack propagation is whether there is accommodation of plastic region at the crack tips. |
其他语种文摘
|
采用分子动力学(MD)方法研究γ-TiAl合金中〈110〉对称倾斜界面的断裂行为,模拟在不同温度与应变速率下垂直界面方向的拉伸变形。结果表明:晶粒的相对取向及晶界特定的原子结构是影响位错形核临界应力的两个主要因素。取向差角度大于90°的 Σ3 (111) 109.5°、Σ9 (221) 141.1° 和 Σ27 (552) 148.4° 界面,位错在晶界处形核和扩展;取向差角度小于90°的 Σ27 (115) 31.6° 和 Σ11 (113) 50.5°界面,无位错在晶界处形核,当应力达到峰值后界面直接断裂。γ-TiAl 双晶的断裂机制为微裂纹在界面处的形核及沿界面扩展;不同取向差界面的区别在于裂纹前端有无塑性区增韧。 |
来源
|
Transactions of Nonferrous Metals Society of China
,2014,24(11):3645-3651 【核心库】
|
DOI
|
10.1016/s1003-6326(14)63510-x
|
关键词
|
gamma TiAl alloy
;
tilt grain boundary
;
molecular dynamics
;
tensile deformation
;
fracture
|
地址
|
1.
Xiangtan University, Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan, 411105
2.
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016
3.
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Australia, NSW, 2522
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6326 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
湖南省自然科学基金
;
supported by the Informalization Construction Project of Chinese Academy of Sciences, China
|
文献收藏号
|
CSCD:5317058
|
参考文献 共
25
共2页
|
1.
Chadwick G A.
Grain boundary structure and properties,1976:139-196
|
CSCD被引
1
次
|
|
|
|
2.
Wolf D. A model for ideal cleavage fracture of grain-boundaries in bcc metals.
Philosophical Magazine A,1991,63(6):1117-1136
|
CSCD被引
1
次
|
|
|
|
3.
Mishin Y. Atomistic modeling of interfaces and their impact on microstructure and properties.
Acta Materialia,2010,58:1117-1151
|
CSCD被引
19
次
|
|
|
|
4.
Zhang Y. Atomic-scale simulation of α/γ-iron phase boundary affecting crack propagation using molecular dynamics method.
Computational Materials Science,2011,50:1754-1762
|
CSCD被引
3
次
|
|
|
|
5.
Li X Y. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
Nature,2012,464:877-880
|
CSCD被引
109
次
|
|
|
|
6.
Lu M. Investment casting of gamma titanium-aluminides for aircraft engine applications.
Structural Intermetallics,2001,2001:225-232
|
CSCD被引
1
次
|
|
|
|
7.
Ding H. Current status and developments in superplastic studies of materials.
The Chinese Journal of Nonferrous Metals, (in Chinese),2004,14(7):1059-1067
|
CSCD被引
2
次
|
|
|
|
8.
Zhang J. TiAl turbochargers for automobile application.
Light Metals Technology,2009,618/619:559-562
|
CSCD被引
1
次
|
|
|
|
9.
Greenberg B A. Possible factors affecting the brittleness of the intermetallic compound TiAl. I. Transformations of dislocations to non-planar configurations.
Scripta Metallurgica,1988,22(6):853-857
|
CSCD被引
3
次
|
|
|
|
10.
Kong F T. Essence of room temperature brittleness of TiAl based alloys and improving approaches.
Journal of Advanced Materials,2007,39(1):33-40
|
CSCD被引
2
次
|
|
|
|
11.
Jin Z. Experimental determination of domain orientations and domain orientation relationships across lamellar interfaces in polysynthetically twinned TiAl crystals.
Materials Science and Engineering A,1997,231(1/2):62-71
|
CSCD被引
5
次
|
|
|
|
12.
Pei Y L. Effects of heat shock at 800 °C on mechanical properties of gamma-TiAl alloys.
Intermetallics,2011,19(2):202-205
|
CSCD被引
1
次
|
|
|
|
13.
Kim Y W. Progress in the understanding of gamma titanium aluminides.
JOM-Journal of the Minerals Metals & Materials Soceity,1991,43:40-47
|
CSCD被引
83
次
|
|
|
|
14.
Appel F. Interface-related deformation phenomena in intermetallic gamma-titanium aluminides.
Physica Scripta,1993,49:387-392
|
CSCD被引
1
次
|
|
|
|
15.
Lu Y H. In-situ TEM study of fracture mechanisms of polysynthetically twinned (PST) crystals of TiAl alloys.
Materials Science and Engineering A,2000,289(1/2):91-98
|
CSCD被引
4
次
|
|
|
|
16.
Appel F. The influence of lamellar interfaces on the mechanical properties of (alpha 2+gamma) titanium aluminides.
Strength of Materials,1994,973:337-340
|
CSCD被引
1
次
|
|
|
|
17.
Farkas D. Interatomic potentials for Ti-Al with and without angular forces.
Modelling and Simulation in Materials Science and Engineering,1994,2(5):975-984
|
CSCD被引
12
次
|
|
|
|
18.
Cai W.
Micro and Nano Mechanics: MD++,2012
|
CSCD被引
1
次
|
|
|
|
19.
Rittner J D. <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies.
Physical Review B,1996,54(10):6999-7015
|
CSCD被引
4
次
|
|
|
|
20.
Chandra N. Atomistic simulation of grain boundary sliding and migration.
Journal of Materials Science,1999,34(4):655-666
|
CSCD被引
4
次
|
|
|
|
|