OPTIMAL BINARY CODES FROM ONE-LEE WEIGHT CODES AND TWO-LEE WEIGHT PROJECTIVE CODES OVER Z_4
查看参考文献19篇
文摘
|
This paper investigates the structures and properties of one-Lee weight codes and two-Lee weight projective codes over Z_4. The authors first give the Pless identities on the Lee weight of linear codes over Z_4. Then the authors study the necessary conditions for linear codes to have one-Lee weight and two-Lee projective weight respectively, the construction methods of one-Lee weight and two-Lee weight projective codes over Z_4 are also given. Finally, the authors recall the weight-preserving Gray map from (Z_4~n, Lee weight) to (F_2~(2n), Hamming weight), and produce a family of binary optimal oneweight linear codes and a family of optimal binary two-weight projective linear codes, which reach the Plotkin bound and the Griesmer bound. |
来源
|
Journal of Systems Science and Complexity
,2014,27(4):795-810 【核心库】
|
DOI
|
10.1007/s11424-014-2188-8
|
关键词
|
Gray map
;
Lee weight
;
one-weight codes
;
projective codes
;
two-weight codes
|
地址
|
1.
School of Mathematical Sciences, Anhui University, Hefei, 230601
2.
Department of Mathematics and Physics, Hefei University, Hefei, 230601
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
数学 |
基金
|
国家自然科学基金
;
Talents youth Fund of Anhui Province Universities
;
The second author of this paper is supported by Key Discipline Construction of Hefei University
|
文献收藏号
|
CSCD:5314368
|
参考文献 共
19
共1页
|
1.
Bonisoli A. Every equidistant linear code is a sequence of dual Hamming codes.
Ars Combin,1983,18:181-186
|
CSCD被引
1
次
|
|
|
|
2.
Lint J V. On perfect ternary constant weight codes.
Designs Codes and Cryptography,1999,18(1/3):231-234
|
CSCD被引
5
次
|
|
|
|
3.
Vega G. Determining the number of one-weight cyclic codes when length and dimension are given, WAIFI.
LNCS 4547,2007:284-293
|
CSCD被引
4
次
|
|
|
|
4.
MacWilliams F J.
The Theory of Error-Correcting Codes,1977
|
CSCD被引
99
次
|
|
|
|
5.
Carlet C.
One-weight Z_4-linear codes, Coding Theory, Cryptography and Related Areas,2000:57-72
|
CSCD被引
1
次
|
|
|
|
6.
Wood J A. The structure of linear codes of constant weight.
Trans. Amer. Math. Soc,2001,354:1007-1026
|
CSCD被引
8
次
|
|
|
|
7.
Wang Y. One-Lee weight codes and two-Lee weight projective codes over F_2+uF_2.
Journal of Shanghai Jiaotong University,2012,46(6):842-847
|
CSCD被引
1
次
|
|
|
|
8.
Shi M J. A class of optimal p-ary codes from one-weight codes over F_p[u]/.
Journal of The Franklin Institute,2013,350(5):929-937
|
CSCD被引
9
次
|
|
|
|
9.
Byrne E. Ring geometries, two-weight codes, and strongly regular graphs.
Designs Codes and Cryptography,2008,48(1):1-16
|
CSCD被引
5
次
|
|
|
|
10.
Vega G. Two-weight cyclic codes constructed as the direct sum of two one-weight cyclic codes.
Fnite Fields and Their Applications,2008,14(3):785-797
|
CSCD被引
6
次
|
|
|
|
11.
Vega G. New class of 2-weight cyclic codes.
Designs Codes and Cryptography,2007,42(3):327-334
|
CSCD被引
8
次
|
|
|
|
12.
Wolfmann J. Projective two-weight irreducible cyclic and constacyclic codes.
Fnite Fields and Their Applications,2008,14(2):351-360
|
CSCD被引
4
次
|
|
|
|
13.
Wolfmann J. Are 2-weight projective cyclic codes irreducible?.
IEEE Trans. Inform. Theory,2005,51(2):733-737
|
CSCD被引
4
次
|
|
|
|
14.
Bouyukliev I. Projective two-weight codes with small parameters and their corresponding graphs.
Designs Codes and Cryptography,2006,41(1):59-78
|
CSCD被引
6
次
|
|
|
|
15.
Brouwer A E. The correspondence between projective codes and 2-weight codes.
Designs Codes and Cryptography,1997,11(3):261-266
|
CSCD被引
5
次
|
|
|
|
16.
Calderbank A R. The geometry of two-weight codes.
Bull. London Math. Soc,1986,18(2):97-122
|
CSCD被引
18
次
|
|
|
|
17.
Wan Z X.
Quaternary Codes,1997
|
CSCD被引
45
次
|
|
|
|
18.
Hammons A. The Z_4-linearity of Kerdock, Preparata, Goethals, and Related codes.
IEEE Trans. Inform. Theory,1994,40(2):301-319
|
CSCD被引
131
次
|
|
|
|
19.
Ling S.
Coding Theory - A First Course,2004
|
CSCD被引
1
次
|
|
|
|
|