湍流预混火焰熄灭特性的实验研究
Experimental Investigation of Turbulent Premixed Flame Extinction
查看参考文献11篇
文摘
|
采用对冲火焰实验系统对贫燃料甲烷/空气湍流火焰发生熄灭的极限条件进行考察,分析了平均流场拉伸和湍流拉伸对火焰熄灭的影响。实验结果表明,随着甲烷/空气火焰当量比的增大,其熄灭时的射流平均速度以及平均拉伸率随之增大,说明平均拉伸对火焰熄灭极限有显著影响。当量比增大时,湍流极限拉伸率和Karlovitz拉伸参数Ka 均增大,这与前人的实验结果一致,但由于平均拉伸的影响,当量比一定时,Ka 的数值比文献数据偏小。根据实验数据,文中对湍流预混火焰熄灭的机制进行了探讨。 |
其他语种文摘
|
Extinction of premixed turbulent methane/air flames was studied in a counterflow burner,and the effects of bulk and turbulent straining on the extinction limits were analysed. The experimental results show that the average jet velocity and bulk stretch rate at extinction increase as the equivalent ratio increases,indicating a significant influence of the bulk straining on flame extinction. With the equivalent ratio increasing,the critical value of turbulent stretch rate and Karlovitz number,Ka,for flame extinction both increase. Although the observation is consistent with previous experiments,the present value ofKa is smaller than literature data for the same equivalent ratio due to the effect of bulk straining. Based on the experimental results,the mechanism of turbulent flame extinction was discussed. |
来源
|
燃烧科学与技术
,2014,20(5):466-470 【核心库】
|
DOI
|
10.11715/rskxjs.r201403054
|
关键词
|
预混燃烧
;
湍流火焰
;
拉伸率
;
火焰熄灭
|
地址
|
1.
中国科学院力学研究所, 北京, 100190
2.
中国科学院力学研究所, 火灾科学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-8740 |
学科
|
能源与动力工程 |
基金
|
中国科学院专项课题资助项目
;
中国科学院力学研究所优秀青年人才培育计划项目资助
|
文献收藏号
|
CSCD:5271771
|
参考文献 共
11
共1页
|
1.
Maruta K. Lewis number effect on extinction characteristics of radiative counterflow CH_4-O_2-N_2-He flames.
Proceedings of the Combustion Institute,1998,27:2611-2617
|
CSCD被引
1
次
|
|
|
|
2.
Ronney P D. Flame structure modification and quenching by turbulence.
Combustion Science and Technology,1999,6:53-76
|
CSCD被引
1
次
|
|
|
|
3.
Karlovitz B. Studies on turbulent flames.
Proceedings of the Combustion Institute,1953,4:613-620
|
CSCD被引
1
次
|
|
|
|
4.
Abdel-Gayed R. Criteria for turbulent proagation limits of premixed flames.
Combustion and Flame,1985,62:61-68
|
CSCD被引
5
次
|
|
|
|
5.
Yang S I. Global quenching of premixed CH4/air flames :Effects of turbulent straining , equivalence ratio,and radiative heat loss.
Proceedings of the Combustion Institute,2002,29:1841-1847
|
CSCD被引
1
次
|
|
|
|
6.
Kostiuk L W. Experimental study of premixed turbulent combustion in opposed streams(Ⅰ):Nonreacting flow field.
Combustion and Flame,1993,92:377-395
|
CSCD被引
12
次
|
|
|
|
7.
Kostiuk L W. Experimental study of premixed turbulent combustion in opposed streams(Ⅱ):Reacting flow field and extinction.
Combustion and Flame,1993,92:396-409
|
CSCD被引
5
次
|
|
|
|
8.
Coppola G. Highly turbulent counterflow flames:A laboratory scale benchmark for practical systems.
Combustion and Flame,2009,156:1834-1843
|
CSCD被引
4
次
|
|
|
|
9.
Cho P. Structure and propagation of turbulent premixed flames stabilized in a stagnation flow.
Twenty-First Symposium (International) on Combustion,1988:1493-1499
|
CSCD被引
1
次
|
|
|
|
10.
Coppola G. Experimental investigation on a turbulence generation system with high-blockage plates.
Experimental Thermal and Fluid Science,2009,33:1037-1048
|
CSCD被引
2
次
|
|
|
|
11.
Bradley D. Premixed flamelet modelling:Factors influencing the turbulent heat release rate source term and the turbulent burning velocity.
Combustion and Flame,2005,143:227-245
|
CSCD被引
2
次
|
|
|
|
|