隔转鸭舵式弹道修正弹气动力工程模型与辨识
Engineering Modeling and Identification of Aerodynamics of Trajectory Correction Projectile with Decoupled Canards
查看参考文献12篇
文摘
|
修正弹的气动力可表示为外形和飞行状态的函数,其模型直接影响动力学系统求解的准确性。在风洞试验数据的基础上,建立适用于隔转鸭舵式弹道修正弹的气动力工程模型。模型综合考虑复攻角和鸭舵相位角的复合效应,并利用最小二乘方法对修正弹阻力、升力、侧向力以及俯仰力矩的工程模型进行参数辨识,模型预测结果得到了计算流体力学计算的验证。结果表明:鸭舵的诱导阻力较小,小攻角范围内利用对称拟合表征修正弹阻力的误差小于3.3%;在攻角和鸭舵相位角的综合影响下,升力表现为正弦特性,侧向力在鸭舵相位角为180°时会出现二次正弦叠加现象。气动力模型为隔转鸭舵式弹道修正弹的飞行特性分析奠定了基础。 |
其他语种文摘
|
The aerodynamics of trajectory correction projectile (TCP) could be expressed as the function of geometry and flight state, of which model can decide the accuracy of the dynamic system directly. An engineering model suiting for the trajectory correction projectile with decoupled canards (TCPDC) is established based on the results of wind tunnel test. This model, including drag, lift, side force and pitch moment, takes the effects of complex angle of attack (AoA) and the phase angles of canards into account. The least square method is utilized to identify the parameters, and the predicted results are validated by CFD. The results show that the yaw drag caused by canards is relatively small and the error of TCP's drag fitted by symmetry model is lower than 3.3% within the small AoA. Under the effects of complex AoA and the phase angles of canards, the lift keeps the sinusoidal feature while a secondary sinusoidal vibration arises along the curve of side force for γ_P=180°. The innovative aerodynamic model makes a foundation for the research on TCPDC's flight characteristics. |
来源
|
兵工学报
,2014,35(10):1542-1548 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2014.10.004
|
关键词
|
流体力学
;
弹道修正
;
双旋弹
;
气动力
;
鸭舵
|
地址
|
南京理工大学, 智能弹药技术国防重点学科实验室, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
中央高校基本科研业务费专项资金
;
国家自然科学基金
|
文献收藏号
|
CSCD:5269438
|
参考文献 共
12
共1页
|
1.
蔡金狮.
飞行器系统辨识学,2003
|
CSCD被引
31
次
|
|
|
|
2.
Bybee T. Precision guidance kit.
45th Annual NDIA Gun and Missile Systems Conference,2010
|
CSCD被引
5
次
|
|
|
|
3.
纪秀玲. 可旋转鸭舵对旋转弹丸纵向气动特性的影响.
北京理工大学学报,2010,31(3):265-268
|
CSCD被引
8
次
|
|
|
|
4.
Jermey C.
Wind tunnel of a spinning 105mm artillery shell model with control surfaces,1979
|
CSCD被引
1
次
|
|
|
|
5.
Sahu J. Development and application of multidisciplinary coupled computational techniques for projectile aerodynamics.
7th International Conference on Computational Fluid Dynamics,2012
|
CSCD被引
3
次
|
|
|
|
6.
Costello M. Linear theory of dual-spin projectile in atmospheric flight.
Journal of Guidance, Control, and Dynamics,2000,23(5):789-797
|
CSCD被引
43
次
|
|
|
|
7.
Wernert P. Stability analysis for canard guided dual-spin stabilized projectiles.
AIAA Atmospheric Flight Mechanics Conference,2009:1-24
|
CSCD被引
4
次
|
|
|
|
8.
Cheng J. On the response of spin stabilized projectile to side force by angular motion and impact.
27th International Symposium on Ballistics,2013
|
CSCD被引
3
次
|
|
|
|
9.
王志刚. 双旋制导火箭弹动力学建模.
兵工学报,2013,34(7):910-915
|
CSCD被引
10
次
|
|
|
|
10.
韩子鹏.
弹箭外弹道学,2008
|
CSCD被引
130
次
|
|
|
|
11.
徐敏.
飞行器空气动力特性分析与计算方法,2012
|
CSCD被引
11
次
|
|
|
|
12.
Je S E. A study on the aerodynamic characteristics for a spin-stabilized projectile with PGK.
26th International Symposium on Ballistics,2011
|
CSCD被引
2
次
|
|
|
|
|