超声速气流中稳焰凹腔吹熄极限分析与建模
Analysis and modeling of blowout limits of cavity flame in supersonic flows
查看参考文献21篇
文摘
|
吹熄极限的研究对于超燃冲压发动机燃烧室中稳焰凹腔和燃料喷注方案的设计具有重要学术意义和工程应用价值.针对凹腔上游喷注燃料的火焰稳定过程进行了研究,从理论上分析了超声速气流中凹腔稳定燃烧的贫燃与富燃吹熄机制,基于剪切层稳燃模式,进一步考虑流场的三维结构,并结合横向射流穿透与混合模型,在有效当量比的计算、凹腔的卷吸过程以及燃料射流与凹腔剪切层/回流区的质量交换等方面改进了已有模型,重新定义了与吹熄过程密切相关的Damokhler数和有效当量比,并以两者关系为准则建立了描述富燃和贫燃吹熄极限的数学模型,进而通过实验数据验证了模型的有效性. |
其他语种文摘
|
A comprehensive understanding of blowout limits of flames in Scramjet has great significance for design of the cavity configuration and injection scheme on academic and engineering fields. In this paper, the process of flame stabilization in the combustor with fuel injection upstream of a cavity was investigated. The physics mechanisms of lean and rich blowout were analyzed theoretically. Based on the shearlayer stabilization mode and three-dimensional flowfield structure, this paper combined the penetration and mixing model of transverse jet and other improved sub-models: the calculation of effective equivalence ratio, the entrainment process and the mass exchange between jet and shearlayer/recirculation zone, and then redefined Damokhler number and the effective equivalence ratio. With these two characteristic parameters, the criteria for blowout limits was mathematically modeled and verified by experimental data. |
来源
|
中国科学. 技术科学
,2014,44(9):961-972 【核心库】
|
DOI
|
10.1360/n092014-00015
|
关键词
|
吹熄极限
;
凹腔
;
超声速气流
;
剪切层
;
横向射流
|
地址
|
1.
国防科技大学航天科学与工程学院, 高超声速冲压发动机技术重点实验室, 长沙, 410073
2.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7259 |
学科
|
能源与动力工程 |
基金
|
国家教育部霍英东教育基金
|
文献收藏号
|
CSCD:5258174
|
参考文献 共
21
共2页
|
1.
Ben-Yakar A. Cavity flame-holders for ignition and flame stabilization in scramjets: An overview.
J Propul Power,2001,17:868-877
|
CSCD被引
65
次
|
|
|
|
2.
丁猛.
基于凹腔的超声速燃烧火焰稳定技术研究. 博士学位论文,2005:92-93
|
CSCD被引
1
次
|
|
|
|
3.
Rasmussen C C. Stability limits of cavity-stabilized flames in supersonic flow.
Proc Combust Inst,2005,30:2825-2833
|
CSCD被引
16
次
|
|
|
|
4.
Ghodke C D. Numerical and experimental studies of flame stability in a cavity stabilized hydrocarbon-fueled scramjet.
17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2011
|
CSCD被引
1
次
|
|
|
|
5.
Shanbhogue S J. Lean blowoff of bluff body stabilized flames: Scaling and dynamics.
Prog Energ Combust,2009,35:98-120
|
CSCD被引
30
次
|
|
|
|
6.
Micka D J. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder.
Proc Combust Inst,2009,32:2397-2404
|
CSCD被引
35
次
|
|
|
|
7.
Rasmussen C C. Visualization of flameholding mechanisms in a supersonic combustor using PLIF.
Proc Combust Inst,2007,31:2505-2512
|
CSCD被引
17
次
|
|
|
|
8.
汪洪波.
超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究. 博士学位论文,2012:1-182
|
CSCD被引
1
次
|
|
|
|
9.
Mitani T. Criteria for flame holding in H2-fueled scramjet engines.
Proc Combust Inst,2000,28:689-695
|
CSCD被引
2
次
|
|
|
|
10.
Driscoll J F. Correlation and analysis of blowout limits of flames in high-speed airflows.
J Propul Power,2005,21:1035-1044
|
CSCD被引
14
次
|
|
|
|
11.
Rasmussen C C. Blowout limits of flames in high-speed airflows: Critical damkohler number.
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2008
|
CSCD被引
1
次
|
|
|
|
12.
Le J L. Analysis and correlation of flame stability limits in supersonic flow with cavity flameholder.
18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference,2012
|
CSCD被引
1
次
|
|
|
|
13.
Coats C M. Nonpremixed combustion in turbulent mixing layers part 2: Recirculation, mixing and flame stabilization.
Combust Flame,2000,122:271-290
|
CSCD被引
3
次
|
|
|
|
14.
Jones R A. A random distribution reacting mixing layer model.
30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,1994
|
CSCD被引
1
次
|
|
|
|
15.
Murray R C. Characteristics of the compressible shear layer over a cavity.
AIAA J,2001,39:846-856
|
CSCD被引
2
次
|
|
|
|
16.
Papamoschou D. The compressible turbulent shear layer: an experimental study.
J Fluid Mech,1988,197:453-477
|
CSCD被引
44
次
|
|
|
|
17.
Slessor M D. Turbulent shear-layer mixing: growth-rate compressibility scaling.
J Fluid Mech,2000,414:35-45
|
CSCD被引
12
次
|
|
|
|
18.
Upatnieks A. Liftoff of turbulent jet flames-assessment of edge flame and other concepts using cinema-PIV.
Combust Flame,2004,138:259-272
|
CSCD被引
3
次
|
|
|
|
19.
Torrez S M.
Design refinement and modeling methods for highly-integrated hypersonic vehicles. Dissertation for the Doctoral Degree,2012:27-29
|
CSCD被引
1
次
|
|
|
|
20.
Davis D L. Computational fluid dynamics analysis of cavity flame holders for scramjets.
35th Aerospace Sciences Meeting and Exhibit,1997
|
CSCD被引
2
次
|
|
|
|
|