酸性土壤浸出液中X80钢微生物腐蚀研究:(I)电化学分析
Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis
查看参考文献25篇
文摘
|
利用微生物和电化学方法研究了X80管线钢在一种酸性土壤浸出液中的硫酸盐还原菌(SRB)腐蚀电化学特征。结果表明,刚接种到酸性土壤浸出液中的SRB需要重新适应环境,该过程导致细菌数量大幅降低;接菌土壤浸出液中管线钢的开路电位低于灭菌土壤浸出液中的;实验前期活性生物膜对管线钢腐蚀起抑制作用,后期微生物代谢产物促进管线钢的腐蚀;SRB活动改变了金属/溶液的电介质性质,是实验后期促进管线钢腐蚀的重要原因。 |
其他语种文摘
|
Electrochemical characteristics of sulphate-reducing bacteria (SRB) induced corrosion of X80 pipeline steel were studied in an acid soil solution by mean of microbiological test methods and electrochemical techniques. The results showed that there exist a period for the newly-inoculated bacteria to be acclimatized to the new environment, during which death of large quantity of bacteria did occur; the open circuit potential of the steel is always lower in the inoculated soil solution than that in the sterile environment; SRB inhibits the corrosion process of the steel in the early stage and accelerates the corrosion process in the later stage during the experiment; while the activity of SRB alters the dielectric of the metal/solution interface, which is responsible for the increase of the corrosion rate of the pipeline steel in the later stage of the experiment. |
来源
|
中国腐蚀与防护学报
,2014,34(4):346-352 【核心库】
|
DOI
|
10.11902/1005.4537.2014.044
|
关键词
|
硫酸盐还原菌
;
X80管线钢
;
酸性土壤浸出液
;
电化学阻抗谱
|
地址
|
1.
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 沈阳, 110016
2.
中石油新疆油田分公司, 克拉玛依, 834000
3.
新疆油田油气储运分公司, 克拉玛依, 834002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
国家科技基础条件平台建设项目
|
文献收藏号
|
CSCD:5236295
|
参考文献 共
25
共2页
|
1.
Jin T Y. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel.
Int. J. Hydrogen Energy,2010,35(15):8014-8021
|
CSCD被引
15
次
|
|
|
|
2.
王伟.
高性能管线钢的组织及强韧化机理研究,2009
|
CSCD被引
5
次
|
|
|
|
3.
Beech I B. Recent advances in the study of biocorrosion.
Rev. Microbiol,1999,30(3):177-190
|
CSCD被引
6
次
|
|
|
|
4.
段东霞. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响.
中国腐蚀与防护学报,2011,31(6):453-456
|
CSCD被引
3
次
|
|
|
|
5.
Little B J.
Encyclopedia of Electrochemistry,2007:662-685
|
CSCD被引
1
次
|
|
|
|
6.
杨佳星. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响.
中国腐蚀与防护学报,2012,32(1):54-58
|
CSCD被引
6
次
|
|
|
|
7.
刘宏芳. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响.
中国腐蚀与防护学报,2009,29(2):93-98
|
CSCD被引
7
次
|
|
|
|
8.
Borenstein S W. Microbiologically influenced corrosion of austenitic stainless steel weldments.
Mater. Perform,1991,30(1):52-54
|
CSCD被引
1
次
|
|
|
|
9.
Javaherdashti R. A review of some characteristics of MIC caused by sulphate-reducing bacteria: past, present and future.
Anti-Corros. Method. M,1999,46(3):173-180
|
CSCD被引
25
次
|
|
|
|
10.
李喜明. 尿素对土壤中Q235钢腐蚀的影响.
中国腐蚀与防护学报,2013,33(3):216-220
|
CSCD被引
3
次
|
|
|
|
11.
李喜明. 土壤中残余尿素对Q235钢微生物腐蚀的影响.
中国腐蚀与防护学报,2012,32(5):397-402
|
CSCD被引
4
次
|
|
|
|
12.
AlAbbas F M. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80).
Int. Biodeterior. Biodegrad,2013,78:34-42
|
CSCD被引
30
次
|
|
|
|
13.
von Wolzogen Kuhr C A H. Unity of Anaerobic and Aerobic Iron Corrosion Process in the Soil.
Corrosion,1961,17(6):293t-299t
|
CSCD被引
5
次
|
|
|
|
14.
King R A. Corrosion by sulphate-reducing bacteria.
Nature,1971,233:491-492
|
CSCD被引
28
次
|
|
|
|
15.
Iverson W P. Corrosion of iron and formation of iron phosphide by desulfovibrio desulfuricans.
Nature,1968,217:1265-1268
|
CSCD被引
10
次
|
|
|
|
16.
Duan J. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater.
Electrochim. Acta,2008,54(1):22-28
|
CSCD被引
44
次
|
|
|
|
17.
Sun C. Interaction of Sulfate-Reducing Bacteria and Carbon Steel Q235 in Biofilm.
Ind. Eng. Chem. Res,2011,50:12797-12806
|
CSCD被引
22
次
|
|
|
|
18.
Cheng S. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior.
Mater. Sci. Eng. C,2009,29(3):751-755
|
CSCD被引
6
次
|
|
|
|
19.
Dunne W M. Bacterial adhesion: Seen any good biofilms Lately?.
Clin. Microbiol. Rev,2002,15(2):155-166
|
CSCD被引
34
次
|
|
|
|
20.
Zuo R. The importance of live biofilms in corrosion protection.
Corros. Sci,2005,47(2):279-287
|
CSCD被引
8
次
|
|
|
|
|