步枪弹侵彻带软硬复合防护明胶靶标的数值模拟
Numerical Simulation of Bullets Penetrating into Gelatin Target with Hard/Soft Composite Armor
查看参考文献12篇
文摘
|
为研究步枪弹撞击带软硬复合防护明胶靶标的作用过程和作用机理,采用显式有限元方法对7.62mm步枪弹侵彻复合靶标过程进行数值模拟,分析侵彻过程中的典型现象及明胶靶标动态响应。数值计算结果表明:陶瓷锥的形成是由压缩应力波和拉伸应力波共同作用的结果;弹头加速度变化存在明显的分段与拐点,侵彻陶瓷面板过程中,加速度达到最大,侵彻聚乙烯(PE)背板层时,出现第二个拐点;由于防护层存在多个界面,撞击过程中PE背板界面存在速度多峰现象:当弹头运动加速度达到最大时,PE背板界面出现第一个速度峰,明胶界面出现第一个压力峰;当弹头开始侵彻PE背板时,背板层出现第二个速度峰;在步枪弹撞击过程中明胶内压力波传递呈现球形波基本形态,压力峰值随距离增加呈指数衰减。 |
其他语种文摘
|
In order to explore the interaction process and mechanism of bullet impacting a gelatin target with hard/ soft composite armor,the penetration of 7.62 mm bullet into composite armor and gelatin is numerically simulated using an FEA method,and the typical phenomena of impacting process and the dynamic response of gelatin target are analyzed. The simulation results show that the formation of the ceramic cone results from the compressive and tensile stress waves. The obvious segmentation and inflection points display on the curve of projectile acceleration. The acceleration reaches its maximum when the projectile penetrates into a ceramic faceplate. The second inflection point appears when the projectile penetrates into PE rear plate. The multi-peaks appear on the velocity curve of PE rear plate due to multiple interfaces on protection layer:When the projectile reaches the maximum acceleration,the first peak appears,and the first pressure peak appears on gelatin interface;the second peak appears when the projectile penetrates into PE rear plate. The propagation of pressure wave in gelatin presents the basic form of spherical wave, and the pressure peak propagation complies with the law of exponential decay. |
来源
|
兵工学报
,2014,35(8):1172-1178 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2014.08.006
|
关键词
|
兵器科学与技术
;
枪弹
;
数值模拟
;
软硬复合防护
;
明胶
;
侵彻
|
地址
|
1.
南京理工大学机械工程学院, 江苏, 南京, 210094
2.
南京理工大学理学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
文献收藏号
|
CSCD:5227090
|
参考文献 共
12
共1页
|
1.
Krishnan K. Numerical simulation of ceramic composite armor subjected to ballistic impact.
Composites,2010,41:583-593
|
CSCD被引
22
次
|
|
|
|
2.
Feli S. Finite element simulation of ceramic/composite armor under ballistic impact.
Composite Structures,2011,42(4):771-780
|
CSCD被引
18
次
|
|
|
|
3.
Feli S. An analytical model for perforation of ceramic/multi-laryered planar woven fabric targets byblunt projectiles.
Composite Structures,2011,93(2):548-560
|
CSCD被引
3
次
|
|
|
|
4.
Fawaz Z. Numerical simulation of normal and oblique ballistic impact on ceramic.
Composite Structures,2004,63(2):387-395
|
CSCD被引
16
次
|
|
|
|
5.
温垚珂. 步枪弹侵彻明胶靶标的数值模拟.
兵工学报,2013,34(1):14-19
|
CSCD被引
19
次
|
|
|
|
6.
Simha C H M. Computational modeling of the penetration response of a high-purity ceramic.
International Journal of Impact Engineering,2002,27(1):65-86
|
CSCD被引
11
次
|
|
|
|
7.
Cronin D S. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna.
4th European LS-DYNA Users Conference,2003:D-I-47-D-I-59
|
CSCD被引
1
次
|
|
|
|
8.
Cheng W.
Implementation of three-dimensional composite failure model into DYNA3D,2004
|
CSCD被引
2
次
|
|
|
|
9.
Menna C. Numerical simulation of impact tests on GFRP composite laminates.
International Journal of Impact Engineering,2011,38(8/9):677-685
|
CSCD被引
10
次
|
|
|
|
10.
Segletes S B.
Modeling the penetration behavior ofrigid spheres into ballistic gelatin, ARL-TR-4393,2008
|
CSCD被引
1
次
|
|
|
|
11.
Kwon J. Compressive strain rate sensitivity of ballistic gelatin.
Journal of Biomechanics,2010,43(3):420-425
|
CSCD被引
10
次
|
|
|
|
12.
Wen Y K. Impact of steel spheres on ballistic gelatin at moderate velocities.
International Journal of Impact Engineering,2013,62:142-151
|
CSCD被引
8
次
|
|
|
|
|