爆炸载荷作用下岩石损伤破裂过程的数值分析
Numerical analysis of damage and crack process of rock under explosive loading
查看参考文献18篇
文摘
|
探讨了JWL爆源模型与朗道模型、应变强度分布模型与应变软化模型的异同点,并在CDEM源程序中引入了JWL爆源模型及应变强度分布模型。利用改进的CDEM程序研究了爆炸载荷作用下岩石损伤破裂的物理过程,重点分析了压碎区、破损区比半径及总破裂度随岩石应变强度的变化规律。研究发现:①最大应变强度是控制岩石破裂范围的关键量,最大应变强度从0.5%增加至5%,压碎区比半径从37降至4,破损区比半径从45降至12,岩石总破裂度从55%降至5%;②相同应变强度情况下,岩石更容易发生剪切破坏,剪切破坏产生的破坏区域的比半径较拉伸破坏产生的大2~5,总破裂度大3%左右;③拉伸破坏为主导(拉伸应变强度主控),破损区的裂缝将沿着径向平直发展;剪切破坏为主导(剪切应变强度主控),破损区的裂缝将弧状向外扩展。 |
其他语种文摘
|
The similarities and differences between JWL model and Landau model and those between strain strength distribution model and strain softening model are discussed, and the JWL model and strain strength distribution model are adopted and introduced in CDEM source program. By using the improved CDEM program, the failure process of rock under explosive loading is studied, and the dimensionless radii of crushed and damage zones and the total fracture degree are mainly analyzed. According to the study, some useful results are obtained: (1) The maximum strain strength is the key parameter to control the failure process. With the increase of the maximum strain strength, from 0.5% to 5%, the dimensionless radius of crushed zone decreases from 37 to 4, the dimensionless radius of damage zone decreases from 45 to 12, and the total fracture degree of rock decreases from 55% to 5%. (2) Under the same strain strength, the occurrence of shear failure is easier than that of tensile failure. The dimensionless radius of failure zone due to shear failure is 2-5 larger than that due to tensile failure, and the total fracture degree is 3% larger. (3) If the tensile failure is the main factor, the fractures in damage zone will propagate along the radial direction straightly. If the shear failure is dominant, the curved fractures will happen. |
来源
|
岩土工程学报
,2014,36(7):1262-1270 【核心库】
|
DOI
|
10.11779/cjge201407010
|
关键词
|
数值分析
;
爆炸
;
岩石
;
损伤破裂
;
JWL
;
应变强度分布
|
地址
|
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4548 |
学科
|
建筑科学 |
基金
|
国家973计划
;
国家科技支撑计划项目
;
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:5194326
|
参考文献 共
18
共1页
|
1.
钱七虎. 岩石爆炸动力学的若干进展.
岩石力学与工程学报,2009,28(10):1945-1968
|
CSCD被引
34
次
|
|
|
|
2.
Friedmaron Bert H.
In situ method for recovering hydrocarbon from subterranean oil shale deposits. USA: US4703798A,1987
|
CSCD被引
1
次
|
|
|
|
3.
丁雁生. 低渗透油气田“层内爆炸”增产技术研究.
石油勘探与开发,2001,28(2):90-96
|
CSCD被引
28
次
|
|
|
|
4.
郑哲敏.
关于地下爆炸计算模型的一个建议,郑哲敏文集,2004
|
CSCD被引
1
次
|
|
|
|
5.
Hagan T N. Rock breakage by explosives.
Acta Astronautica,1979,6(3):329-340
|
CSCD被引
12
次
|
|
|
|
6.
刘殿中(译).
矿岩爆破的物理过程,1980
|
CSCD被引
2
次
|
|
|
|
7.
张奇. 岩石爆破的粉碎区及其空腔膨胀.
爆炸与冲击,1990,10(1):79-82
|
CSCD被引
5
次
|
|
|
|
8.
戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算.
辽宁工程技术大学学报(自然科学版),2001,20(20):144-147
|
CSCD被引
79
次
|
|
|
|
9.
夏祥. 岩体爆生裂纹的数值模拟.
岩土力学,2006,27(11):1987-1991
|
CSCD被引
32
次
|
|
|
|
10.
Li S H. Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method.
Rock Mechanics and Rock Engineering,2007,40(4):331-348
|
CSCD被引
21
次
|
|
|
|
11.
Wang Y N. Stochastic structural model of rock and soil aggregates by continumm-based discrete element method.
Scinece in China Series E-Engineering & Materials Science,2005,48(S1):95-106
|
CSCD被引
17
次
|
|
|
|
12.
赵铮. 爆轰产物JWL状态方程应用研究.
高压物理学报,2009,23(4):277-282
|
CSCD被引
52
次
|
|
|
|
13.
LSTC.
LS-DYNA keyword user's manual,2007
|
CSCD被引
12
次
|
|
|
|
14.
Li S H. Progressive failure constitutive model of fracture plane in geomaterial based on strain strength distribution.
International Journal of Solids And Structures,2013,50(3/4):570-577
|
CSCD被引
11
次
|
|
|
|
15.
陈保君. 岩石爆炸增渗模型实验及DEM数值模拟研究.
爆破,2008,25(3):1-6,16
|
CSCD被引
5
次
|
|
|
|
16.
冯春. 半弹簧接触模型及其在边坡破坏计算中的应用.
力学学报,2011,43(1):184-192
|
CSCD被引
17
次
|
|
|
|
17.
冯春. 基于CDEM的顺层边坡地震稳定性分析方法研究.
岩土工程学报,2012,34(4):717-724
|
CSCD被引
8
次
|
|
|
|
18.
Feng C. A combined contact model in CDEM and its application in blasting engineering.
Discrete Element Methods, Simulation of Discontinua: Theory and Applications,2010:153-158
|
CSCD被引
1
次
|
|
|
|
|