地基微重力效应模拟影响骨髓间充质干细胞生物学行为及其调控机理研究进展
Impacts of ground-based microgravity simulation on biological responses of bone marrow mesenchymal stem cells and its underlying mechanisms: A mini-review
查看参考文献47篇
文摘
|
随着空间生命科学的发展,地基模拟微重力效应的研究显得越来越重要,以弥补空间飞行机会受限的不足。骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)在地基能够向各胚层分化,但其在空间微重力条件下的生物学行为以及调控机制仍不清楚。地基模拟微重力效应会影响BMSCs的生长、凋亡和细胞表面分子的表达,导致细胞骨架重组,改变BMSCs在不同分化方向上的潜能。本文就地基微重力效应模拟如何影响BMSCs生物学行为及其相关调控机理进行综述,以期深入认识(微)重力影响BMSCs的力学-生物学耦合机制,为与空间飞行相关的病理生理改变提供理论参考。 |
其他语种文摘
|
With the development of space life science, researches on ground-based microgravity simulation become more and more important for spaceflight to complement their limited missions. It is well known that bone marrow mesenchymal stem cells (BMSCs) are pluripotent, self-renewing cells with multi-lineage differentiation capacity on the ground, but their responses under microgravity and the underlying regulatory mechanisms are poorly understood. Ground-based microgravity simulation might affect cell proliferation, apoptosis and expression of surface molecules, and induce cytoskeletal reorganization, as well as alter the differentiation potential of BMSCs. In this review, how ground-based microgravity simulation mediates BMSCs' responses and its involved mechanisms are summarized to further understand the mechano-biological coupling in such process and provide theoretical references for space flight-induced pathophysiological alterations. |
来源
|
医用生物力学
,2014,29(3):285-291 【核心库】
|
关键词
|
微重力
;
骨髓间充质干细胞
;
细胞生长
;
细胞骨架
;
细胞分化
|
地址
|
1.
重庆大学生物工程学院, 中国科学院微重力重点实验室, 重庆, 400044
2.
中国科学院力学研究所, 生物力学与生物工程中心, 中国科学院微重力重点实验室, 北京, 100190
3.
重庆大学生物工程学院, 重庆, 400044
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1004-7220 |
学科
|
基础医学 |
基金
|
国家973计划
;
中科院先导专项
;
重庆市科委自然基金项目
|
文献收藏号
|
CSCD:5184952
|
参考文献 共
47
共3页
|
1.
Buckey J C Jr. Preparing for Mars: The physiologic and medical challenges.
Eur J Med Res,1999,4(9):353-356
|
CSCD被引
1
次
|
|
|
|
2.
Williams D R. Bioastronautics: Optimizing human performance through research and medical innovations.
Nutrition,2002,18(10):794-796
|
CSCD被引
1
次
|
|
|
|
3.
Clement G.
Fundamentals of space biology: Research on cells, animals and plants in space,2006:376
|
CSCD被引
1
次
|
|
|
|
4.
Long M. Biomechanics on cell responses to microgravity.
Advances in Microgravity Sciences,2010:215-233
|
CSCD被引
2
次
|
|
|
|
5.
Davis T A. Effect of spaceflight on human stem cell hematopoiesis: Suppression of erythropoiesis and myelopoiesis.
J Leukoc Biol,1996,60(1):69-76
|
CSCD被引
5
次
|
|
|
|
6.
Ichiki A T. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells.
J Leukoc Biol,1996,60(1):37-43
|
CSCD被引
4
次
|
|
|
|
7.
Plett P A. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells.
Exp Hematol,2004,32(8):773-781
|
CSCD被引
20
次
|
|
|
|
8.
Pittenger M F. Multilineage potential of adult human mesenchymal stem cells.
Science,1999,284(5411):143-147
|
CSCD被引
1933
次
|
|
|
|
9.
Monticone M. Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure.
J Cell Biochem,2010,111(2):442-452
|
CSCD被引
6
次
|
|
|
|
10.
Talbot N C. The effects of space flight and microgravity on the growth and differentiation of PICM-19 pig liver stem cells.
In Vitro Cell Dev Biol Anim,2010,46(6):502-515
|
CSCD被引
1
次
|
|
|
|
11.
Sun S J. A novel counter sheet-flow sandwich cell culture system to unravel cellular responses in space.
Microgravity Sci Tech,2008,20(2):115-120
|
CSCD被引
10
次
|
|
|
|
12.
Hu W R. Space experimental studies of microgravity fluid science in China.
Chin Sci Bull,2009,54(22):4035-4048
|
CSCD被引
7
次
|
|
|
|
13.
龙勉. 空间生物技术.
微重力科学导论,2010:323-363
|
CSCD被引
1
次
|
|
|
|
14.
Li H. Effects of oriented substrates on cell morphology, the cell cycle, and the cytoskeleton in Ros 17/2.8 cells.
Sci China Ser C,2010,53(9):1085-1091
|
CSCD被引
1
次
|
|
|
|
15.
Wang Y L. Effects of simulated microgravity on embryonic stem cells.
PLoS ONE,2011,6(12):e29214
|
CSCD被引
3
次
|
|
|
|
16.
Majumder S. Simulated microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/Notch1 signaling.
J Cell Biochem,2011,112(7):1898-1908
|
CSCD被引
3
次
|
|
|
|
17.
Puca A. Properties of mechano-transduction via simulated microgravity and its effects on intracellular trafficking of VEGFR's.
Oncotarget,2012,3(4):426-434
|
CSCD被引
1
次
|
|
|
|
18.
李彦. 微重力环境下Smads信号通路对人牙周膜干细胞成骨向分化的影响.
上海口腔医学,2012,21(3):246-250
|
CSCD被引
2
次
|
|
|
|
19.
Gershovich J G. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects.
Bull Exp Biol Med,2007,144(4):608-613
|
CSCD被引
2
次
|
|
|
|
20.
Dai Z Q. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells.
Cell Prolif,2007,40(5):671-684
|
CSCD被引
33
次
|
|
|
|
|