磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束
The compositions of magnetite and ilmenite of the Taihe layered intrusion,Sichuan Province: Constraints on the formation of the P-rich Fe-Ti oxide ores
查看参考文献49篇
文摘
|
产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti 氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti 氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1. 2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti 氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti 氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5% ~ 12%磷灰石、20% ~ 35% Fe-Ti 氧化物、50% ~ 60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO_2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO 分别与TiO_2、MgO 显示负相关,而FeO 分别与Fe_2O_3、MnO 显示正的相关,且TiO_2、FeO、MnO、 MgO 含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P 岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr_2O_3 (0. 07% ~ 0. 21%),而中部岩相带包裹在橄榄石中磁铁矿Cr_2O_3 (0. 00% ~ 0. 03%)显著降低,且这些磁铁矿Cr_2O_3含量变化与单斜辉石Cr 含量和斜长石An 牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti + V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。 |
其他语种文摘
|
The ~ 260Ma Taihe layered intrusion is one of the mafic-ultramafic intrusions host giant magmatic Fe-Ti oxide ore deposit in the central Emeishan Large Igneous Province. It outcrops ~ 3km long and ~ 2km wide,and has a thickness of ~ 1. 2km. According to mineral assemblages and petrography textures,the intrusion can be divided into three lithologic zones: Lower Zone (LZ),Middle Zone (MZ) and Upper Zone (UZ). The LZ comprises (olivine) gabbros and thick massive Fe-Ti oxide ores. The MZ consists of six cyclic units,which are comprised of (apatite) magnetite clinopyroxenites and (apatite) gabbros from the base to the top. The UZ is comprised of Fe-Ti oxide-poor apatite gabbros. The apatite magnetite clinopyroxenites of the Taihe MZ contain 5% ~ 12% apatite,20% ~ 35% Fe-Ti oxides and 50% ~ 60% silicates which occur as cumulus phases together with apatite. The magnetite compositions of the apatite magnetite clinopyroxenites are characterized by high TiO_2,FeO,MnO and MgO contents and its variations are similar to those of the Panzhihua intrusion. Meanwhile,the ilmenite compositions display the negative correlations between FeO and TiO_2 and MgO,respectively. The FeO of ilmenite is positively correlated to Fe_2O_3 and MnO,respectively. These features suggest that magnetite and ilmenite crystallized from the Fe-Ti-P-rich silicate magma rather than immiscible nelsonitic melts. It thus can be concluded that the origin of apatite magnetite clinopyroxenites is resulted from crystal fractionation associated with gravitational sorting and setting. In the LZ,magnetite inclusions in olivine contain relatively high Cr_2O_3 (0. 07% ~ 0. 21%),whereas the Cr_2O_3 (0. 00% ~ 0. 03%) of magnetite inclusions in olivine from the MZ abruptly decreased. The Cr_2O_3 contents of magnetite inclusions in olivine are positively correlated with An content of plagioclase and Cr content of clinopyroxene. It confirms the replenished parental magmas formed the MZ rocks are different from the relatively primitive parental magmas formed the LZ rocks and ores. The MZ Fe-Ti-P-rich magma may be produced by the Fe-Ti enriched magma from a deep-seated magma chamber mixing with the extensively evolved P-rich magma in a middle level magma chamber. The relatively low Ti + V contents of magnetite of the UZ and the top of MZ suggest the compositions of these magnetites may be modified by magmatic hydrothermal resulted from late stage of magma differentiation. |
来源
|
岩石学报
,2014,30(5):1443-1456 【核心库】
|
关键词
|
磁铁矿
;
钛铁矿
;
磷灰石
;
层状岩体
;
太和
;
峨眉山大火成岩省
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550002
2.
四川省冶金地质勘查院, 成都, 610051
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家973计划
;
矿床地球化学国家重点实验室项目群
;
中国科学院国家外国专家局创新团队国际合作伙伴计划“陆内成矿作用研究团队”
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5166906
|
参考文献 共
49
共3页
|
1.
Ali J R. Emeishan large igneous province,SW China.
Lithos,2005,79(3/4):475-489
|
CSCD被引
99
次
|
|
|
|
2.
Bai Z J. Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan large igneous province,Southwest China.
Economic Geology,2012,107(3):507-524
|
CSCD被引
27
次
|
|
|
|
3.
Barton M D. An evaporitic-source model for igneous related Fe-oxide (-REE-Cu-Au-U) mineralization.
Geology,1996,24(3):259-262
|
CSCD被引
42
次
|
|
|
|
4.
Charlier B. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province,SW Norway) and the formation of Fe-Ti ores in massif-type anorthosites.
Chemical Geology,2006,234(3):264-290
|
CSCD被引
16
次
|
|
|
|
5.
Charlier B. Experiments on liquid immiscibility along tholeiitic liquid lines of descent.
Contributions to Mineralogy and Petrology,2012,164(1):27-44
|
CSCD被引
18
次
|
|
|
|
6.
Chen W T. Differentiation of nelsonitic magmas in the formation of the ~ 1. 74Ga Damiao Fe-Ti-P ore deposit,North China.
Contributions to Mineralogy and Petrology,2013,165(6):1341-1362
|
CSCD被引
11
次
|
|
|
|
7.
Chung S L. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary.
Geology,1995,23(10):889-892
|
CSCD被引
237
次
|
|
|
|
8.
Duchesne J C. Fe-Ti deposits in Rogaland anorthosites (South Norway): Geochemical characteristics and problems of interpretation.
Mineralium Deposita,1999,34(2):182-198
|
CSCD被引
16
次
|
|
|
|
9.
Dupuis C. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types.
Mineralium Deposita,2011,46(4):319-335
|
CSCD被引
114
次
|
|
|
|
10.
Dymek R F. Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorites) associated with massif anorthosites.
Economic Geology,2001,96(4):797-815
|
CSCD被引
8
次
|
|
|
|
11.
Fan W M. Geochronology and geochemistry of Permian basalts in western Guangxi Province,Southwest China: Evidence for plume-lithosphere interaction.
Lithos,2008,102(1/2):218-236
|
CSCD被引
50
次
|
|
|
|
12.
Foose M P. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu-U-Au-rare earth element) deposits and tectonic implications.
Geology,1995,23(7):665-668
|
CSCD被引
1
次
|
|
|
|
13.
Hou T. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti oxide ores in the Panxi district, Emeishan Large Igneous Province,Southwest China.
Ore Geology Reviews,2012,49:109-127
|
CSCD被引
13
次
|
|
|
|
14.
Jakobsen J K. Immiscible iron-and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion.
Geology,2005,33(11):885-888
|
CSCD被引
19
次
|
|
|
|
15.
Klemme S. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon.
Chemical Geology,2006,234(3/4):251-263
|
CSCD被引
27
次
|
|
|
|
16.
Kolker A. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis.
Economic Geology,1982,77(5):1146-1158
|
CSCD被引
22
次
|
|
|
|
17.
McBirney A. The Skaergaard intrusion.
Developments in Petrology,1996,15:147-180
|
CSCD被引
5
次
|
|
|
|
18.
Namur O. Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion,Canada.
Journal of Petrology,2010,51(6):1203-1236
|
CSCD被引
17
次
|
|
|
|
19.
Pang K N. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions,SW China: Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma.
Contributions to Mineralogy and Petrology,2008,156(3):307-321
|
CSCD被引
35
次
|
|
|
|
20.
Pang K N. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua Intrusion,SW China.
Journal of Petrology,2008,49(2):295-313
|
CSCD被引
45
次
|
|
|
|
|