峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因
Petrogenesis of the Heigutian Ti-Vmagnetite ore-bearing layered intrusion,the inner zone of the Emeishan large igneous province
查看参考文献67篇
文摘
|
黑谷田岩体产于峨眉山大火成岩省内带,是一个小型含钒钛磁铁矿辉长岩体。与区内其它典型大型基性-超基性层状岩体具有多个旋回岩相的特征不同,黑谷田层状岩体分为下部、上部两个岩相带: 下部岩相带从底到顶依次为橄榄辉石岩、磁铁辉长岩、含磷灰石辉长岩和中粒辉长岩,上部岩相带为细粒辉长岩,二者呈突变接触关系。黑谷田岩体的锆石SHRIMP U-Pb 年龄为263 ± 5Ma,表明其是~ 260Ma 峨眉山地幔柱岩浆主活动期的产物。岩石的矿物组合(主要为单斜辉石、斜长石,磁铁矿,少量橄榄石等) 、元素地球化学(富Fe_2O_3、TiO_2、P_2O_5,高Sm/Yb 及低La /Sm)及低的初始~(87)Sr /~(86) Sr 值和亏损的ε_(Nd) (t)值特征一致指示黑谷田岩体与峨眉山高Ti 玄武岩具有密切的内在成因联系。岩体的岩相学及地球化学特征暗示下部岩相带是富Fe- Ti 岩浆侵入发生橄榄石、单斜辉石、磁铁矿、斜长石、磷灰石等矿物分离结晶、堆积固结的产物,而上部岩相带是另一期岩浆上侵较为快速冷却固结的结果,矿物堆晶作用不显著,但是二者起源于相同的母岩浆。下部岩相带比上部岩相带具有相对低的初始~(87)Sr /~(86)Sr 值(分别为0. 7041 ~ 0. 7051和0. 7050 ~ 0. 7056)和略高的ε_(Nd) (t)值(分别为2. 1 ~ 4. 4和0. 6 ~ 1. 3),表明后者比前者经历了稍微强烈的地壳物质同化混染。下部岩相带仅有橄榄辉石岩及辉长岩而缺少正长岩和花岗岩、以及较厚的氧化物矿体赋存在岩体底部下凹部位说明黑谷田钒钛磁铁矿形成于岩浆通道系统中,磁铁矿在流动过程中由于重力作用堆积成矿。黑谷田含钒钛磁铁矿岩体的发现表明小型层状岩体也具有重要的Fe-Ti 氧化物成矿潜力,在勘探找矿中不容忽视。 |
其他语种文摘
|
The Heigutian intrusion is a small-scaled gabbroic intrusion containing Ti-V-magnetite oxides and is located in the central part of the Emeishan large igneous province. In contrast to other typical large layered intrusions characterized by several cyclic units in a petrographic zone,the Heigutian intrusion is subdivided into a lower zone and an upper zone. The lower zone consists of olivine pyroxenite,magnetite gabbro,apatite gabbro and medium-grained gabbro from the base upward,whereas the upper zone consists of primarily fine-grained gabbro,and demonstrates a sharp contact between these two zones. The zircon SHRIMP U-Pb age dating result displays that the Heigutian intrusion was intruded at 263 ± 5Ma,and may be the product of the main stage of plume-related magmatism at ~ 260Ma. The Heigutian intrusion shows a close genetic relationship to the Emeishan high-Ti basalts,evidenced consistently by the mineral assemblages (mainly by clinopyroxene,plagioclase,magnetite,and small amounts of olivine,apatite),geochemical features (enriched in Fe_2O_3,TiO_2,and P_2O_5,high Sm/Yb and low La /Sm ratios),and low initial ~(87)Sr /~(86) Sr ratios as well as high ε_(Nd)(t) values in the mafic rocks. The accumulation sequences and geochemical features reveal the lower zone was resulted from accumulation of olivine,clinopyroxene,magnetite,apatite and plagioclase crystallized from a single pulse of Fe-Ti-enrich magma,whereas the upper zone was generated by slightly rapid cooling consolidation of a new influx of magma. However,both the lower and upper zones were originated from the same parental magma genetically related to the Emeishan mantle plume. The lower zone has lower initial 87 Sr /86 Sr (0. 7041 ~ 0. 7051) and higher ε_(Nd)(t) values (2. 1 ~ 4. 4) than the upper zone (0. 7050 ~ 0. 7056,and 0. 6 ~ 1. 3,respectively), suggesting the later had experienced slightly more extensive crustal contamination relative to the former. Only the olivine pyroxenite and gabbro occur in the lower zone but absence of granites and synenites. The thick stratiform Fe-Ti oxide layers are located at the concave part of the base of the Heigutian intrusion. These observations imply that the Heigutian intrusion occurred in a magma plumbing system,and the Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Tienriched magmas. The discovery of the Heigutian Fe-Ti oxide bearing intrusion indicates that the small-scaled intrusions can also be very significant targets to host Fe-Ti oxide deposit and should not be ignored during exploration. |
来源
|
岩石学报
,2014,30(5):1415-1431 【核心库】
|
关键词
|
黑谷田
;
层状岩体
;
钒钛磁铁矿
;
峨眉山大火成岩省
;
成因
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550002
2.
攀钢集团矿业有限公司, 攀枝花, 617000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家973计划
;
中国科学院贵阳地球化学研究所矿床地球化学中国科学院重点实验室基金
;
中国科学院国家外国专家局创新团队国际合作伙伴计划“陆内成矿作用研究团队”
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5166904
|
参考文献 共
67
共4页
|
1.
Bindeman I N. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements.
Geochim. Cosmochim. Acta,1998,62(7):1175-1193
|
CSCD被引
18
次
|
|
|
|
2.
Bai Z J. Whole-rock and mineral composition constraints on the genesis of the giant hongge Fe-Ti-V oxide deposit in the Emeishan large igneous Province,Southwest China.
Econ. Geol,2012,107(3):507-524
|
CSCD被引
27
次
|
|
|
|
3.
Chung S L. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary.
Geology,1995,23(10):889-892
|
CSCD被引
238
次
|
|
|
|
4.
Fujimaki H. Partition coefficients of Hf,Zr,and REE between zircon,apatite,and liquid.
Contrib. Mineral. Petrol,1986,94(1):42-45
|
CSCD被引
37
次
|
|
|
|
5.
He B. Age and duration of the Emeishan flood volcanism,SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites,post-volcanic Xuanwei Formation and clay tuff at the Chaotian section.
Earth Planet. Sci. Lett,2007,255(3/4):306-323
|
CSCD被引
152
次
|
|
|
|
6.
He Q. Variety and complexity of the Late-Permian Emeishan basalts: Reappraisal of plume-lithosphere interaction processes.
Lithos,2010,119(1):91-107
|
CSCD被引
25
次
|
|
|
|
7.
Hou T. A reappraisal of the high-Ti and low-Ti classification of basalts and petrogenetic linkage between basalts and mafic-ultramafic intrusions in the Emeishan Large Igneous Province,SW China.
Ore Geol. Rev,2011,41(1):133-143
|
CSCD被引
18
次
|
|
|
|
8.
Hou T. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province,Southwest China.
Ore Geol. Rev,2012,49:109-127
|
CSCD被引
13
次
|
|
|
|
9.
Hou T. A new metallogenic model of the Panzhihua giant V-Ti-iron oxide deposit (Emeishan Large Igneous Province) based on high-Mg olivine-bearing wehrlite and new field evidence.
Int. Geol. Rev,2012,54(15):1721-1745
|
CSCD被引
16
次
|
|
|
|
10.
Hou T. The role of recycled oceanic crust in magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit,central Emeishan large igneous province, SW China.
Contrib. Mineral. Petrol,2013,165(4):805-822
|
CSCD被引
30
次
|
|
|
|
11.
Hoskin P W O. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon.
J. Metamorphic Geol,2000,18(4):423-439
|
CSCD被引
641
次
|
|
|
|
12.
Howarth G H. Trace element,PGE,and Sr-Nd isotope geochemistry of the Panzhihua mafic layered intrusion,SW China: Constraints on ore-forming processes and evolution of parent magma at depth in a plumbing-system.
Geochim. Cosmochim. Acta,2013,120:459-478
|
CSCD被引
5
次
|
|
|
|
13.
Jones J H. Experimental Trace Element Partitioning,in Rock Physics and Phase Relations.
A Handbook of Physical Constants, Reference Shelf 3,1995:73-104
|
CSCD被引
1
次
|
|
|
|
14.
Kamenetsky V S. Picrites from the Emeishan Large Igneous Province,SW China: A compositional continuum in primitive magmas and their respective mantle sources.
J. Petrol,2012,53(10):2095-2113
|
CSCD被引
31
次
|
|
|
|
15.
Qi L. Determination of trace elements in granites by inductively coupled plasma mass spectrometry.
Talanta,2000,51(3):507-513
|
CSCD被引
459
次
|
|
|
|
16.
Luan Y. Key factors controlling the accumulation of the Fe-Ti oxides in the Hongge layered intrusion in the Emeishan Large Igneous Province,SW China.
Ore Geol. Rev,2014,57:518-538
|
CSCD被引
15
次
|
|
|
|
17.
Ludwig K R.
SQUID 1. 03. A user manual.,2001:19
|
CSCD被引
1
次
|
|
|
|
18.
Ludwig K R.
ISOPLOT/Ex. Version 2. 49: A geochronological toolkit for Microsoft Excel: Berkeley Geochronological Center,2001:56
|
CSCD被引
1
次
|
|
|
|
19.
Luo W J. Geochronology-geochemistry of the Cida bimodal intrusive complex,central Emeishan large igneous province, Southwest China: Petrogenesis and plume-lithosphere interaction.
Int. Geol. Rev,2013,55(1):88-114
|
CSCD被引
5
次
|
|
|
|
20.
Nielsen R L. BIGD. FOR: A FORTRAN program to calculate traceelement partition coefficients for natural mafic and intermediate composition magmas.
Computers and Geosciences,1992,18(7):773-788
|
CSCD被引
2
次
|
|
|
|
|